The processes that produce and maintain genetic structure in organisms operate at different timescales and on different life-history stages. In marine macroalgae, gene flow occurs through gamete/zygote dispersal and rafting by adult thalli. Population genetic patterns arise from this contemporary gene flow interacting with historical processes. We analyzed spatial patterns of mitochondrial DNA variation to investigate contemporary and historical dispersal patterns in the New Zealand endemic fucalean brown alga Carpophyllum maschalocarpum (Turner) Grev. Populations bounded by habitat discontinuities were often strongly differentiated from adjoining populations over scales of tens of kilometers and intrapopulation diversity was generally low, except for one region of northeast New Zealand (the Bay of Plenty). There was evidence of strong connectivity between the northern and eastern regions of New Zealand's North Island and between the North and South Islands of New Zealand and the Chatham Islands (separated by 650 km of open ocean). Moderate haplotypic diversity was found in Chatham Islands populations, while other southern populations showed low diversity consistent with Last Glacial Maximum (LGM) retreat and subsequent recolonization. We suggest that ocean current patterns and prevailing westerly winds facilitate long-distance dispersal by floating adult thalli, decoupling genetic differentiation of Chatham Island populations from dispersal potential at the gamete/zygote stage. This study highlights the importance of encompassing the entire range of a species when inferring dispersal patterns from genetic differentiation, as realized dispersal distances can be contingent on local or regional oceanographic and historical processes.
When invasive species move to new environments they typically experience population bottlenecks that limit the probability that pathogens and parasites are also moved. The invasive species may thus be released from biotic interactions that can be a major source of density-dependent mortality, referred to as enemy release. We examined for evidence of enemy release in populations of the common wasp (Vespula vulgaris), which attains high densities and represents a major threat to biodiversity in its invaded range. Mass spectrometry proteomic methods were used to compare the microbial communities in wasp populations in the native (Belgium and England) and invaded range (Argentina and New Zealand). We found no evidence of enemy release, as the number of microbial taxa was similar in both the introduced and native range. However, some evidence of distinctiveness in the microbial communities was observed between countries. The pathogens observed were similar to a variety of taxa observed in honey bees. These taxa included Nosema, Paenibacillus, and Yersina spp. Genomic methods confirmed a diversity of Nosema spp., Actinobacteria, and the Deformed wing and Kashmir bee viruses. We also analysed published records of bacteria, viruses, nematodes and fungi from both V. vulgaris and the related invader V. germanica. Thirty-three different microorganism taxa have been associated with wasps including Kashmir bee virus and entomophagous fungi such as Aspergillus flavus. There was no evidence that the presence or absence of these microorganisms was dependent on region of wasp samples (i.e. their native or invaded range). Given the similarity of the wasp pathogen fauna to that from honey bees, the lack of enemy release in wasp populations is probably related to spill-over or spill-back from bees and other social insects. Social insects appear to form a reservoir of generalist parasites and pathogens, which makes the management of wasp and bee disease difficult.
Sargassum subgenus Phyllotricha currently includes seven species restricted to Australian and New Zealand coasts. A recent study of Cystoseira and other Sargassaceae genera based on mitochondrial 23S DNA and chloroplast-encoded psbA sequences resulted in the most widely distributed species of subgenus Phyllotricha, Sargassum decurrens, being transferred to the reinstated monospecific Sargassopsis Trevisan. The fate of the residual six Phyllotricha species, however, was not considered. The present study examines these Phyllotricha species, alongside other Sargassum subgenera, Sargassopsis, Sirophysalis trinodis (formerly Cystoseira trinodis) and the New Zealand endemic Carpophyllum Greville, using morphological evidence and the molecular phylogenetic markers cox3, ITS-2 and the rbcL-S spacer. Our results suggest both the genus Sargassum and Sargassum subgenus Phyllotricha are polyphyletic as currently circumscribed. Four S. subgen. Phyllotricha species, i.e. S. sonderi, S. decipiens, S. varians and S. verruculosum, form a monophyletic group sister to the genus Carpophyllum, and S. peronii is genetically identical to S. decurrens with regard to all three loci. We propose the resurrection of the genus Phyllotricha Areschoug, with type species Phyllotricha sonderi, and include the new combinations Phyllotricha decipiens, Phyllotricha varians and Phyllotricha verruculosum. Sargassum peronii, S. heteromorphum and S. kendrickii are transferred to Sargassopsis and Sargassum peronii is considered a synonym of Sargassopsis decurrens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.