The free energy principle, an influential framework in computational neuroscience and theoretical neurobiology, starts from the assumption that living systems ensure adaptive exchanges with their environment by minimizing the objective function of variational free energy. Following this premise, it claims to deliver a promising integration of the life sciences. In recent work, Markov Blankets, one of the central constructs of the free energy principle, have been applied to resolve debates central to philosophy (such as demarcating the boundaries of the mind). The aim of this paper is twofold. First, we trace the development of Markov blankets starting from their standard application in Bayesian networks, via variational inference, to their use in the literature on active inference. We then identify a persistent confusion in the literature between the formal use of Markov blankets as an epistemic tool for Bayesian inference, and their novel metaphysical use in the free energy framework to demarcate the physical boundary between an agent and its environment. Consequently, we propose to distinguish between ‘Pearl blankets’ to refer to the original epistemic use of Markov blankets and ‘Friston blankets’ to refer to the new metaphysical construct. Second, we use this distinction to critically assess claims resting on the application of Markov blankets to philosophical problems. We suggest that this literature would do well in differentiating between two different research programs: ‘inference with a model’ and ‘inference within a model’. Only the latter is capable of doing metaphysical work with Markov blankets, but requires additional philosophical premises and cannot be justified by an appeal to the success of the mathematical framework alone.
Shagrir (2001) and Sprevak (2010) explore the apparent necessity of representation for the individuation of digits (and processors) 1 in computational systems. I will first offer a response to Sprevak's argument that does not mention Shagrir's original formulation, which was more complex. I then extend my initial response to cover Shagrir's argument, thus demonstrating that it is possible to individuate digits in non-representational computing mechanisms. I also consider the implications that the non-representational individuation of digits would have for the broader theory of computing mechanisms.
Post-cognitive approaches to cognitive science, such as enactivism and autopoietic theory, are typically assumed to involve the rejection of computationalism. We will argue that this assumption results from the conflation of computation with the notion of representation, which is ruled out by the post-cognitivist rejection of cognitive realism. However, certain theories of computation need not invoke representation, and are not committed to cognitive realism, meaning that post-cognitivism need not necessarily imply anti-computationalism. Finally, we will demonstrate that autopoietic theory shares a mechanistic foundation with these theories of computation, and is therefore well-equipped to take advantage of these theories.
The proposal that probabilistic inference and unconscious hypothesis testing are central to information processing in the brain has been steadily gaining ground in cognitive neuroscience and associated fields. One popular version of this proposal is the new theoretical framework of predictive processing or prediction error minimization (PEM), which couples unconscious hypothesis testing with the idea of 'active inference' and claims to offer a unified account of perception and action. Here we will consider one outstanding issue that still looms large at the core of the PEM framework: the lack of a clear criterion for distinguishing conscious states from unconscious ones. In order to fulfill the promise of becoming a unifying framework for describing and modeling cognition, PEM needs to be able to differentiate between conscious and unconscious mental states or processes. We will argue that one currently popular view, that the contents of conscious experience are determined by the 'winning hypothesis' (i.e. the one with the highest posterior probability, which determines the behavior of the system), falls short of fully accounting for conscious experience. It ignores the possibility that some states of a system can control that system's behavior even though they are apparently not conscious (as evidenced by e.g. blindsight or subliminal priming). What follows from this is that the 'winning hypothesis' view does not provide a complete account of the difference between conscious and unconscious states in the probabilistic brain. We show how this problem (and some other related problems) for the received view can be resolved by augmenting PEM with Daniel Dennett's multiple drafts model of consciousness. This move is warranted by the similar roles that attention and internal competition play in both the PEM framework and the multiple drafts model. SyntheseKeywords Predictive processing · Active inference · Consciousness · Multiple drafts · Prediction error minimization · Generative model · Control model · Attention · Illusionism Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.