BackgroundBiofeedback systems that use inertial measurement units (IMUs) have been shown recently to have the ability to objectively assess exercise technique. However, there are a number of challenges in developing such systems; vast amounts of IMU exercise datasets must be collected and manually labeled for each exercise variation, and naturally occurring technique deviations may not be well detected. One method of combatting these issues is through the development of personalized exercise technique classifiers.ObjectiveWe aimed to create a tablet app for physiotherapists and personal trainers that would automate the development of personalized multiple and single IMU-based exercise biofeedback systems for their clients. We also sought to complete a preliminary investigation of the accuracy of such individualized systems in a real-world evaluation.MethodsA tablet app was developed that automates the key steps in exercise technique classifier creation through synchronizing video and IMU data collection, automatic signal processing, data segmentation, data labeling of segmented videos by an exercise professional, automatic feature computation, and classifier creation. Using a personalized single IMU-based classification system, 15 volunteers (12 males, 3 females, age: 23.8 [standard deviation, SD 1.8] years, height: 1.79 [SD 0.07] m, body mass: 78.4 [SD 9.6] kg) then completed 4 lower limb compound exercises. The real-world accuracy of the systems was evaluated.ResultsThe tablet app successfully automated the process of creating individualized exercise biofeedback systems. The personalized systems achieved 89.50% (1074/1200) accuracy, with 90.00% (540/600) sensitivity and 89.00% (534/600) specificity for assessing aberrant and acceptable technique with a single IMU positioned on the left thigh.ConclusionsA tablet app was developed that automates the process required to create a personalized exercise technique classification system. This tool can be applied to any cyclical, repetitive exercise. The personalized classification model displayed excellent system accuracy even when assessing acute deviations in compound exercises with a single IMU.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.