Lactic acid bacteria are named because of their nearly exclusive fermentative metabolism. Thus, the recent observation of EET activity—typically associated with anaerobic respiration—in this class of organisms has forced researchers to rethink the rules governing microbial metabolic strategies.
Macroautophagic recycling of dysfunctional mitochondria, known as mitophagy, is essential for mitochondrial homeostasis and cell viability. Accumulation of defective mitochondria and impaired mitophagy have been widely implicated in many neurodegenerative diseases, and loss-of-function mutations of PINK1 and Parkin, two key regulators of mitophagy, are amongst the most common causes of heritable parkinsonism. This has led to the hypothesis that pharmacological stimulation of mitophagy may be a feasible approach to combat neurodegeneration. Toward this end, we screened ~ 45,000 small molecules using a high-throughput, whole-organism, phenotypic screen that monitored accumulation of PINK-1 protein, a key event in mitophagic activation, in a Caenorhabditis elegans strain carrying a Ppink-1::PINK-1::GFP reporter. We obtained eight hits that increased mitochondrial fragmentation and autophagosome formation. Several of the compounds also reduced ATP production, oxygen consumption, mitochondrial mass, and/or mitochondrial membrane potential. Importantly, we found that treatment with two compounds, which we named PS83 and PS106 (more commonly known as sertraline) reduced neurodegenerative disease phenotypes, including delaying paralysis in a C. elegans β-amyloid aggregation model in a PINK-1-dependent manner. This report presents a promising step toward the identification of compounds that will stimulate mitochondrial turnover.
Lactiplantibacillus plantarum is a homofermentative lactic acid bacteria that is commonly found in the human gut and fermented food products. Despite its overwhelmingly fermentative metabolism, this microbe can perform extracellular electron transfer (EET) when provided with an exogenous quinone, 1,4-dihydroxy-2-naphthoic acid (DHNA) and riboflavin. However, the separate roles of DHNA and riboflavin in EET in L. plantarum has remained unclear. Here we seek to understand the role of quinones and flavins for EET by monitoring iron and anode reduction in the presence and absence of these small molecules. We found that either addition of DHNA or riboflavin can support robust iron reduction, indicating electron transfer to extracellular iron occurs through both flavin-dependent and DHNA-dependent routes. Using genetic mutants of L. plantarum, we found that flavin-dependent iron reduction requires Ndh2 and EetA, while DHNA-dependent iron reduction largely relies on Ndh2 and PplA. In contrast to iron reduction, DHNA-containing media supported more robust anode reduction than riboflavin-containing media, suggesting electron transfer to an anode proceeds most efficiently through the DHNA-dependent pathway. Furthermore, we found that flavin-dependent anode reduction requires EetA, Ndh2, and PplA, while DHNA-dependent anode reduction requires Ndh2 and PplA. Taken together, we identify multiple EET routes utilized by L. plantarum and show that the EET route depends on access to environmental biomolecules and on the extracellular electron acceptor. This work expands our molecular-level understanding of EET in Gram-positive microbes and provides additional opportunities to manipulate EET for biotechnology.
Redox-active small molecules containing quinone functional groups play important roles as pharmaceuticals, but can be toxic if overdosed. Despite the need for a fast and quantitative method to detect quinone and its derivatives, current sensing strategies are often slow and struggle to differentiate between structural analogs. Leveraging the discovery that microorganisms use certain quinones to perform extracellular electron transfer (EET), we investigated the use of Lactiplantibacillus plantarum as a whole-cell bioelectronic sensor to selectively sense quinone analogs. By tailoring the native EET pathway in L. plantarum, we enabled quantitative quinone sensing of 1,4-dihydroxy-2-naphthoic acid (DHNA) - a gut bifidogenic growth stimulator. We found that L. plantarum could respond to environmental DHNA within seconds, producing electronic signals that cover a 106 concentration range. This sensing capacity was robust in different assay media and allowed for continuous monitoring of DHNA concentrations. In a simulated gut environment containing a mixed pool of quinone derivatives, this tailored EET pathway can selectively sense pharmacologically relevant quinone analogs, such as DHNA and menadione, amongst other structurally similar quinone derivatives. We also developed a multivariate model to describe the mechanism behind this selectivity and found a predictable correlation between quinone physiochemical properties and the corresponding electronic signals. Our work presents a new strategy to selectively sense redox-active molecules using whole-cell bioelectronic sensors and opens the possibility of using probiotic L. plantarum for bioelectronic applications in human health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.