No abstract
Exhaustive study of topological semimetal phases of matter in equilibriated electonic systems and myriad extensions has built upon the foundations laid by earlier introduction and study of the Weyl semimetal, with broad applications in topologically-protected quantum computing, spintronics, and optical devices. We extend recent introduction of multiplicative topological phases to find previously-overlooked topological semimetal phases of electronic systems in equilibrium, with minimal symmetry-protection. We show these multiplicative topological semimetal phases exhibit rich and distinctive bulk-boundary correspondence and response signatures that greatly expand understanding of consequences of topology in condensed matter settings, such as the limits on Fermi arc connectivity and structure, and transport signatures such as the chiral anomaly. Our work therefore lays the foundation for extensive future study of multiplicative topological semimetal phases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.