Bayesian networks provide a powerful tool for reasoning about probabilistic causation, used in many areas of science. They are, however, intrinsically classical. In particular, Bayesian networks naturally yield the Bell inequalities. Inspired by this connection, we generalize the formalism of classical Bayesian networks in order to investigate non-classical correlations in arbitrary causal structures. Our framework of 'generalized Bayesian networks' replaces latent variables with the resources of any generalized probabilistic theory, most importantly quantum theory, but also, for example, Popescu-Rohrlich boxes. We obtain three main sets of results. Firstly, we prove that all of the observable conditional independences required by the classical theory also hold in our generalization; to obtain this, we extend the classical d-separation theorem to our setting. Secondly, we find that the theory-independent constraints on probabilities can go beyond these conditional independences. For example we find that no probabilistic theory predicts perfect correlation between three parties using only bipartite common causes. Finally, we begin a classification of those causal structures, such as the Bell scenario, that may yield a separation between classical, quantum and general-probabilistic correlations.
Employing standard results from spectral geometry, we provide strong evidence that in the classical limit the ground state of three-dimensional causal dynamical triangulations is de Sitter spacetime. This result is obtained by measuring the expectation value of the spectral dimension on the ensemble of geometries defined by these models, and comparing its large scale behaviour to that of a sphere (Euclidean de Sitter). From the same measurement we are also able to confirm the phenomenon of dynamical dimensional reduction observed in this and other approaches to quantum gravity -the first time this has been done for three-dimensional causal dynamical triangulations. In this case, the value for the short-scale limit of the spectral dimension that we find is approximately 2. We comment on the relevance of these results for the comparison to asymptotic safety and Hořava-Lifshitz gravity, among other approaches to quantum gravity.
Contrary to what is often stated, a fundamental spacetime discreteness need not contradict Lorentz invariance. A causal set's discreteness is in fact locally Lorentz invariant, and we recall the reasons why. For illustration, we introduce a phenomenological model of massive particles propagating in a Minkowski spacetime which arises from an underlying causal set. The particles undergo a Lorentz invariant diffusion in phase space, and we speculate on whether this could have any bearing on the origin of high energy cosmic rays.
This paper concerns sprinklings into Minkowski space (Poisson processes). It proves that there exists no equivariant measurable map from sprinklings to spacetime directions (even locally). Therefore, if a discrete structure is associated to a sprinkling in an intrinsic manner, then the structure will not pick out a preferred frame, locally or globally. This implies that the discreteness of a sprinkled causal set will not give rise to "Lorentz breaking" effects like modified dispersion relations. Another consequence is that there is no way to associate a finite-valency graph to a sprinkling consistently with Lorentz invariance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.