BackgroundHeart rate (HR) alarms are prevalent in ICU, and these parameters are configurable. Not much is known about nursing behavior associated with tailoring HR alarm parameters to individual patients to reduce clinical alarm fatigue.ObjectivesTo understand the relationship between heart rate (HR) alarms and adjustments to reduce unnecessary heart rate alarms.MethodsRetrospective, quantitative analysis of an adjudicated database using analytical approaches to understand behaviors surrounding parameter HR alarm adjustments. Patients were sampled from five adult ICUs (77 beds) over one month at a quaternary care university medical center. A total of 337 of 461 ICU patients had HR alarms with 53.7% male, mean age 60.3 years, and 39% non-Caucasian. Default HR alarm parameters were 50 and 130 beats per minute (bpm). The occurrence of each alarm, vital signs, and physiologic waveforms was stored in a relational database (SQL server).ResultsThere were 23,624 HR alarms for analysis, with 65.4% exceeding the upper heart rate limit. Only 51% of patients with HR alarms had parameters adjusted, with a median upper limit change of +5 bpm and -1 bpm lower limit. The median time to first HR parameter adjustment was 17.9 hours, without reduction in alarms occurrence (p = 0.57).ConclusionsHR alarms are prevalent in ICU, and half of HR alarm settings remain at default. There is a long delay between HR alarms and parameters changes, with insufficient changes to decrease HR alarms. Increasing frequency of HR alarms shortens the time to first adjustment. Best practice guidelines for HR alarm limits are needed to reduce alarm fatigue and improve monitoring precision.
This paper presents the analysis of urine bioassay data, spanning four decades, from five workers who had wounds contaminated with plutonium at the Department of Energy Rocky Flats Plant during the period 1961-1967. The cases were selected from participants in the Department of Energy-sponsored Former Radiation Worker Medical Surveillance Program at Rocky Flats, which provided medical monitoring, modern bioassay measurements, and internal dose re-evaluations for former Rocky Flats workers. The cases include a variety of wound types, excision treatment regimes, and monitoring information. These wound cases illustrate the use of two multi-compartment wound models and three plutonium urine excretion models for retrospective calculation of internal plutonium depositions resulting from wounds for which no chelation therapy was administered. Wound model compartment fractions and half times are determined for each case and urine excretion model as are composite parameter values. The urine analysis and wound count measurements obtained under the program provide data with state-of-the art measurement sensitivity, as well as the opportunity to include long-term excretion and wound site data that exceed 10,000 d post-exposure for retrospective intake and dose evaluations. These data are provided to the radiation dosimetry community for use in developing and testing improved models for plutonium deposition in wounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.