We approach the analysis of the extent of the projectivity of modules from a fresh perspective as we introduce the notion of relative subprojectivity. A module M and is said to be N -subprojective if for every epimorphism g : B → N and homomorphism f : M → N , there exists a homomorphism h : M → B such that gh = f . For a module M , the subprojectivity domain of M is defined to be the collection of all modules N such that M is N -subprojective. We consider, for every ring R, the subprojective profile of R, namely, the class of all subprojectivity domains for R modules. We show that the subprojective profile of R is a semilattice, and consider when this structure has coatoms or a smallest element. Modules whose subprojectivity domain is smallest as possible will be called subprojectively poor (sp-poor) or projectively indigent (pindigent) and those with co-atomic subprojectivy domain are said to be maximally subprojective. While we do not know if sp-poor modules and maximally subprojective modules exist over every ring, their existence is determined for various families. For example, we determine that artinian serial rings have sp-poor modules and attain the existence of maximally subprojective modules over the integers and for arbitrary V-rings. This work is a natural continuation to recent papers that have embraced the systematic study of the injective, projective and subinjective profiles of rings.
The study of pure-injectivity is accessed from an alternative point of view. A module M is called pure-subinjective relative to a module N if for every pure extension K of N, every homomorphism N → M can be extended to a homomorphism K → M. The pure-subinjectivity domain of the module M is defined to be the class of modules N such that M is N-pure-subinjective. Basic properties of the notion of pure-subinjectivity are investigated. We obtain characterizations for various types of rings and modules, including absolutely pure (or, FP-injective) modules, von Neumann regular rings and (pure-) semisimple rings in terms of pure-subinjectivity domains. We also consider cotorsion modules, endomorphism rings of certain modules, and, for a module N, (pure) quotients of N-pure-subinjective modules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.