Predator avoidance of noxious prey, aposematism and defensive mimicry are normally associated with bright, contrasting patterns and colours. However, noxious prey may be unable to evolve conspicuous coloration because of other selective constraints, such as the need to be inconspicuous to their own prey or to specialist predators. Many venomous snakes, particularly most vipers, display patterns that are apparently cryptic, but nevertheless highly characteristic, and appear to be mimicked by other, non-venomous snakes. However, predator avoidance of viper patterns has never been demonstrated experimentally. Here, the analysis of 813 avian attacks on 12 636 Plasticine snake models in the field shows that models bearing the characteristic zigzag band of the adder (Vipera berus) are attacked significantly less frequently than plain models. This suggests that predator avoidance of inconspicuously but characteristically patterned noxious prey is possible. Our findings emphasize the importance of mimicry in the ecological and morphological diversification of advanced snakes.
Background: Outcomes in children hospitalised with severe acute malnutrition (SAM) remain poor. The current milk-based formulations focus on restoring weight-gain but fail to address modification of the integrity of the gut barrier and may exacerbate malabsorption owing to functional lactase, maltase and sucrase deficiency. We hypothesise that nutritional feeds should be designed to promote bacterial diversity and restore gastrointestinal (GI) barrier function. Methods: Our major objective was to develop a lactose-free, fermentable carbohydrate-containing alternative to traditional F75 and F100 formulae for the inpatient treatment of SAM. New target nutritional characteristics were developed and relevant food and infant food specific legislation were reviewed. Suitable certified suppliers of ingredients were identified. Processing and manufacture steps were evaluated and optimised for safety (nutritional, chemical and microbiological), and efficacy at meeting target characteristics (lactose-free, containing resistant starch 0.4-0.5% final product weight). Results: A final validated production process was developed and implemented to produce a novel food product for the inpatient treatment of SAM in children in Africa designed to reduce risk of osmotic diarrhoea and support symbiotic gut microbial populations. The final product matched the macronutrient profile of double-concentrated F100, adhered to all relevant legislation regulating infant foods, was lactose free, and contained 0.6% resistant starch. Chickpeas were selected as the source of resistant starch, since they are widely grown and eaten throughout Africa. Micronutrient content could not be matched in this ready-to-use product, so this was replaced at the point of feeding, as was fluid lost through concentration. Conclusions: The processes and product described illustrate the development steps for a novel nutritional product. The new feed product was ready for evaluation for safety and efficacy in a phase II clinical trial in Ugandan children admitted to hospital with SAM (Modifying Intestinal MicroBiome with Legume-Based feed 2: MIMBLE feed 2 (ISRCTN10309022)).
Background: Outcomes in children hospitalised with severe acute malnutrition (SAM) remain poor. The current milk-based formulations focus on restoring weight-gain but fail to address modification of the integrity of the gut barrier and may exacerbate malabsorption owing to functional lactase, maltase and sucrase deficiency. We hypothesise that nutritional feeds should be designed to promote bacterial diversity and restore gastrointestinal (GI) barrier function. Methods: Our major objective was to develop a lactose-free, fermentable carbohydrate-containing alternative to traditional F75 and F100 formulae for the inpatient treatment of SAM. New target nutritional characteristics were developed and relevant food and infant food specific legislation were reviewed. Suitable certified suppliers of ingredients were identified. Processing and manufacture steps were evaluated and optimised for safety (nutritional, chemical and microbiological), and efficacy at meeting target characteristics (lactose-free, containing resistant starch 0.4-0.5% final product weight). Results: A final validated production process was developed and implemented to produce a novel food product for the inpatient treatment of SAM in children in Africa designed to reduce risk of osmotic diarrhoea and support symbiotic gut microbial populations. The final product matched the macronutrient profile of double-concentrated F100, adhered to all relevant legislation regulating infant foods, was lactose free, and contained 0.6% resistant starch. Chickpeas were selected as the source of resistant starch, since they are widely grown and eaten throughout Africa. Micronutrient content could not be matched in this ready-to-use product, so this was replaced at the point of feeding, as was fluid lost through concentration. Conclusions: The processes and product described illustrate the development steps for a novel nutritional product. The new feed product was ready for evaluation for safety and efficacy in a phase II clinical trial in Ugandan children admitted to hospital with SAM (Modifying Intestinal MicroBiome with Legume-Based feed 2: MIMBLE feed 2 (ISRCTN10309022)).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.