VisANT is a web-based software framework for visualizing and analyzing many types of networks of biological interactions and associations. Networks are a useful computational tool for representing many types of biological data, such as biomolecular interactions, cellular pathways and functional modules. Given user-defined sets of interactions or groupings between genes or proteins, VisANT provides: (i) a visual interface for combining and annotating network data, (ii) supporting function and annotation data for different genomes from the Gene Ontology and KEGG databases and (iii) the statistical and analytical tools needed for extracting topological properties of the user-defined networks. Users can customize, modify, save and share network views with other users, and import basic network data representations from their own data sources, and from standard exchange formats such as PSI-MI and BioPAX. The software framework we employ also supports the development of more sophisticated visualization and analysis functions through its open API for Java-based plug-ins. VisANT is distributed freely via the web at and can also be downloaded for individual use.
The detailed structure of molecular networks, including their dependence on conditions and time, are now routinely assayed by various experimental techniques. Visualization is a vital aid in integrating and interpreting such data. We describe emerging approaches for representing and visualizing systems data and for achieving semantic zooming, or changes in information density concordant with scale. A central challenge is to move beyond the display of a static network to visualizations of networks as a function of time, space and cell state, which capture the adaptability of the cell. We consider approaches for representing the role of protein complexes in the cell cycle, displaying modules of metabolism in a hierarchical format, integrating experimental interaction data with structured vocabularies such as Gene Ontology categories and representing conserved interactions among orthologous groups of genes.
With the integration of the KEGG and Predictome databases as well as two search engines for coexpressed genes/proteins using data sets obtained from the Stanford Microarray Database (SMD) and Gene Expression Omnibus (GEO) database, VisANT 3.0 supports exploratory pathway analysis, which includes multi-scale visualization of multiple pathways, editing and annotating pathways using a KEGG compatible visual notation and visualization of expression data in the context of pathways. Expression levels are represented either by color intensity or by nodes with an embedded expression profile. Multiple experiments can be navigated or animated. Known KEGG pathways can be enriched by querying either coexpressed components of known pathway members or proteins with known physical interactions. Predicted pathways for genes/proteins with unknown functions can be inferred from coexpression or physical interaction data. Pathways produced in VisANT can be saved as computer-readable XML format (VisML), graphic images or high-resolution Scalable Vector Graphics (SVG). Pathways in the format of VisML can be securely shared within an interested group or published online using a simple Web link. VisANT is freely available at http://visant.bu.edu.
Fourier transform-infrared (FT-IR) chemical imaging in transmission mode has traditionally been performed on expensive mid-IR transparent windows such as barium/calcium fluoride, which are more fragile than glass, making preparation in the histopathology laboratories more cumbersome. A solution is presented here by using cheap glass substrates for the FT-IR chemical imaging, which has a high-wavenumber transmission window allowing measurement of the C-H, N-H, and O-H stretches occurring at ca. 2500-3800 cm(-1). The "fingerprint" region of the IR spectrum occurring below 1800 cm(-1) is not obtainable; however, we demonstrate that a wealth of information is contained in the high wavenumber range using 71 patients on a breast tissue microarray (TMA) as a model for investigation. Importantly, we demonstrate that the tissue can be classified into four basic tissue cell types and that using just the epithelial cells, reasonable discrimination of normal and malignant tissue can be found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.