The Astropy Project supports and fosters the development of open-source and openly developed Python packages that provide commonly needed functionality to the astronomical community. A key element of the Astropy Project is the core package astropy, which serves as the foundation for more specialized projects and packages. In this article, we provide an overview of the organization of the Astropy project and summarize key features in the core package, as of the recent major release, version 2.0. We then describe the project infrastructure designed to facilitate and support development for a broader ecosystem of interoperable packages. We conclude with a future outlook of planned new features and directions for the broader Astropy Project.
The discovery and characterization of exoplanets around nearby stars is driven by profound scientific questions about the uniqueness of Earth and our Solar System, and the conditions under which life could exist elsewhere in our Galaxy. Doppler spectroscopy, or the radial velocity (RV) technique, has been used extensively to identify hundreds of exoplanets, but with notable challenges in detecting terrestrial mass planets orbiting within habitable zones. We describe infrared RV spectroscopy at the 10 m Hobby-Eberly telescope that leverages a 30 GHz electro-optic laser frequency comb with nanophotonic supercontinuum to calibrate the Habitable Zone Planet Finder spectrograph. Demonstrated instrument precision <10 cm/s and stellar RVs approaching 1 m/s open the path to discovery and confirmation of habitable zone planets around M-dwarfs, the most ubiquitous type of stars in our Galaxy. Fig.1. Instrumentation for precision infrared astronomical RV spectroscopy. (A) Starlight is collected by the Hobby-Eberly telescope and directed to an optical fiber. Lasers, electro-optics and nanophotonics are used to generate an optical frequency comb with teeth spaced by 30 GHz and stabilized to an atomic clock. Both the starlight and frequency comb light are coupled to the highly-stabilized Habitable Zone Planet Finder (HPF) spectrograph where minute wavelength changes in the stellar spectrum are tracked with the precise calibration grid provided by the laser frequency comb. (B) Components for frequency comb generation. (upper) A fiber-optic integrated electro-optic modulator and (lower) silicon nitride chip (5 mm × 3 mm) on which nanophotonic waveguides are patterned. Light is coupled into a waveguide from the left and supercontinuum is extracted from the right with a lensed fiber. (C) The HPF spectrograph, opened and showing the camera optics on the left, echelle grating on the right, and relay mirrors in front. The spectrograph footprint is approximately 1.5 m × 3 m. (D) The 10 m Hobby-Eberly telescope at the McDonald Observatory in southwest Texas.
We validate the discovery of a 2 Earth radii sub-Neptune-size planet around the nearby high proper motion M2.5-dwarf G 9-40 (EPIC 212048748), using high-precision near-infrared (NIR) radial velocity (RV) observations with the Habitable-zone Planet Finder (HPF), precision diffuser-assisted ground-based photometry with a custom narrow-band photometric filter, and adaptive optics imaging. At a distance of d = 27.9 pc, G 9-40b is the second closest transiting planet discovered by K2 to date. The planet's large transit depth (∼3500ppm), combined with the proximity and brightness of the host star at NIR wavelengths (J=10, K=9.2) makes G 9-40b one of the most favorable sub-Neptune-sized planet orbiting an M-dwarf for transmission spectroscopy with JWST, ARIEL, and the upcoming Extremely Large Telescopes. The star is relatively inactive with a rotation period of ∼29 days determined from the K2 photometry. To estimate spectroscopic stellar parameters, we describe our implementation of an empirical spectral matching algorithm using the high-resolution NIR HPF spectra. Using this algorithm, we obtain an effective temperature of T eff = 3404 ± 73K, and metallicity of [Fe/H] = −0.08 ± 0.13. Our RVs, when coupled with the orbital parameters derived from the transit photometry, exclude planet masses above 11.7M ⊕ with 99.7% confidence assuming a circular orbit. From its radius, we predict a mass of M = 5.0 +3.8 −1.9 M ⊕ and an RV semi-amplitude of K = 4.1 +3.1 −1.6 m s −1 , making its mass measurable with current RV facilities. We urge further RV follow-up observations to precisely measure its mass, to enable precise transmission spectroscopic measurements in the future.
Understanding the dynamics and kinematics of outflowing atmospheres of hot and warm exoplanets is crucial to understanding the origins and evolutionary history of the exoplanets near the evaporation desert. Recently, groundbased measurements of the meta-stable helium atom's resonant absorption at 10830 Å has become a powerful probe of the base environment which is driving the outflow of exoplanet atmospheres. We report evidence for the He I 10830 Å in absorption (equivalent width ∼0.012±0.002 Å) in the exosphere of a warm Neptune orbiting the M-dwarf GJ 3470, during three transits using the Habitable Zone Planet Finder near-infrared spectrograph. This marks the first reported evidence for He I 10830 Å atmospheric absorption for a planet orbiting an M-dwarf. Our detected absorption is broad and its blueshifted wing extends to −36 km s −1 , the largest reported in the literature to date. We modeled the state of helium atoms in the exosphere of GJ3470b based on assumptions on the UV and X-ray flux of GJ 3470, and found our measurement of flux-weighted column density of meta-stable state helium () =´-N 2.4 10 cm He S 10 2 3 2 , derived from our transit observations, to be consistent with the model, within its uncertainties. The methodology developed here will be useful to study and constrain the atmospheric outflow models of other exoplanets like GJ 3470b, which are near the edge of the evaporation desert. Unified Astronomy Thesaurus concepts: Exoplanet atmospheric composition (2021); Exoplanet atmospheres (487); Exosphere (499); High resolution spectroscopy (2096); Near infrared astronomy (1093); Exoplanet astronomy (486)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.