Characterizing the transcriptome of individual cells is fundamental to understanding complex biological systems. We describe a droplet-based system that enables 3′ mRNA counting of tens of thousands of single cells per sample. Cell encapsulation, of up to 8 samples at a time, takes place in ∼6 min, with ∼50% cell capture efficiency. To demonstrate the system's technical performance, we collected transcriptome data from ∼250k single cells across 29 samples. We validated the sensitivity of the system and its ability to detect rare populations using cell lines and synthetic RNAs. We profiled 68k peripheral blood mononuclear cells to demonstrate the system's ability to characterize large immune populations. Finally, we used sequence variation in the transcriptome data to determine host and donor chimerism at single-cell resolution from bone marrow mononuclear cells isolated from transplant patients.
40Characterizing the transcriptome of individual cells is fundamental to understanding complex 41 biological systems. We describe a droplet-based system that enables 3' mRNA counting of up 56peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission.The copyright holder for this preprint (which was not . http://dx.doi.org/10.1101/065912 doi: bioRxiv preprint first posted online 84 RESULTS 86Droplet-based platform enables barcoding of tens of thousands of cells 88The scRNA-seq microfluidics platform builds on the GemCode ® technology, which has 89 been used for genome haplotyping, structural variant analysis and de novo assembly of a 90human genome [10][11][12] . The core of the technology is a Gel bead in Emulsion (GEM). GEM 91 peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission.The copyright holder for this preprint (which was not . http://dx.doi.org/10.1101/065912 doi: bioRxiv preprint first posted online 5 generation takes place in an 8-channel microfluidic chip that encapsulates single gel beads at ~80% fill rate (Fig. 1a-c). Each gel bead is functionalized with barcoded oligonucleotides that 93 consist of: i) sequencing adapters and primers, ii) a 14bp barcode drawn from ~750,000 94 designed sequences to index GEMs, iii) a 10bp randomer to index molecules (unique molecular 95 identifier, UMI), and iv) an anchored 30bp oligo-dT to prime poly-adenylated RNA transcripts 96 (Fig. 1d). Within each microfluidic channel, ~100,000 GEMs are formed per ~6-min run, 97encapsulating thousands of cells in GEMs. Cells are loaded at a limiting dilution to minimize co- 98occurrence of multiple cells in the same GEM. 100Cell lysis begins immediately after encapsulation. Gel beads automatically dissolve to 101 release their oligonucleotides for reverse transcription of poly-adenylated RNAs. Each cDNA 102 molecule contains a UMI and shared barcode per GEM, and ends with a template switching 103 oligo at the 3' end (Fig. 1e). Next, the emulsion is broken and barcoded cDNA is pooled for 104PCR amplification, using primers complementary to the switch oligos and sequencing adapters. Methods, Fig. 1f). Briefly, 98-nt of Read1s were aligned against the union of human (hg19) 123peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission.The copyright holder for this preprint (which was not . http://dx.doi.org/10.1101/065912 doi: bioRxiv preprint first posted online 6 Based on the distribution of total UMI counts for each barcode (Online Methods), we 124 estimated that 1,012 GEMs contained cells, of which 482 and 538 contained reads that mapped 125 primarily to the human and mouse transcriptome, respectively (and will be referred to as human 126 and mouse GEMs) (Fig. 2a). >83% of UMI counts were associated with cell barcodes, 127indicating low background of cell-free RNA. Eight cell-containing GEMs had a substantial 128 fraction of human and mouse UMI counts (the UMI count is >1% of each species' UMI...
Systematic analyses of spatiotemporal gene expression trajectories during organogenesis have been challenging because diverse cell types at different stages of maturation and differentiation coexist in the emerging tissues. We identified discrete cell types as well as temporally and spatially restricted trajectories of radial glia maturation and neurogenesis in developing human telencephalon. These lineage-specific trajectories reveal the expression of neurogenic transcription factors in early radial glia and enriched activation of mammalian target of rapamycin signaling in outer radial glia. Across cortical areas, modest transcriptional differences among radial glia cascade into robust typological distinctions among maturing neurons. Together, our results support a mixed model of topographical, typological, and temporal hierarchies governing cell-type diversity in the developing human telencephalon, including distinct excitatory lineages emerging in rostral and caudal cerebral cortex.
High-throughput single-cell transcriptomics offers an unbiased approach for understanding the extent, basis, and function of gene expression variation between seemingly identical cells. Here, we sequence single-cell RNA-Seq libraries prepared from over 1,700 primary mouse bone marrow derived dendritic cells (DCs) spanning several experimental conditions. We find substantial variation between identically stimulated DCs, in both the fraction of cells detectably expressing a given mRNA and the transcript’s level within expressing cells. Distinct gene modules are characterized by different temporal heterogeneity profiles. In particular, a “core” module of antiviral genes is expressed very early by a few “precocious” cells, but is later activated in all cells. By stimulating cells individually in sealed microfluidic chambers, analyzing DCs from knockout mice, and modulating secretion and extracellular signaling, we show that this response is coordinated via interferon-mediated paracrine signaling. Surprisingly, preventing cell-to-cell communication also substantially reduces variability in the expression of an early-induced “peaked” inflammatory module, suggesting that paracrine signaling additionally represses part of the inflammatory program. Our study highlights the importance of cell-to-cell communication in controlling cellular heterogeneity and reveals general strategies that multicellular populations use to establish complex dynamic responses.
Summary Radial glia, the neural stem cells of the neocortex, are located in two niches: the ventricular zone and outer subventricular zone. Although outer subventricular zone radial glia may generate the majority of human cortical neurons, their molecular features remain elusive. By analyzing gene expression across single cells, we find that outer radial glia preferentially express genes related to extracellular matrix formation, migration, and stemness, including TNC, PTPRZ1, FAM107A, HOPX, and LIFR. Using dynamic imaging, immunostaining, and clonal analysis, we relate these molecular features to distinctive behaviors of outer radial glia, demonstrate the necessity of STAT3 signaling for their cell cycle progression, and establish their extensive proliferative potential. These results suggest that outer radial glia directly support the subventricular niche through local production of growth factors, potentiation of growth factor signals by extracellular matrix proteins, and activation of self-renewal pathways, thereby enabling the developmental and evolutionary expansion of the human neocortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.