The Arabidopsis Information Portal (https://www.araport.org) is a new online resource for plant biology research. It houses the Arabidopsis thaliana genome sequence and associated annotation. It was conceived as a framework that allows the research community to develop and release ‘modules’ that integrate, analyze and visualize Arabidopsis data that may reside at remote sites. The current implementation provides an indexed database of core genomic information. These data are made available through feature-rich web applications that provide search, data mining, and genome browser functionality, and also by bulk download and web services. Araport uses software from the InterMine and JBrowse projects to expose curated data from TAIR, GO, BAR, EBI, UniProt, PubMed and EPIC CoGe. The site also hosts ‘science apps,’ developed as prototypes for community modules that use dynamic web pages to present data obtained on-demand from third-party servers via RESTful web services. Designed for sustainability, the Arabidopsis Information Portal strategy exploits existing scientific computing infrastructure, adopts a practical mixture of data integration technologies and encourages collaborative enhancement of the resource by its user community.
Synthetic biology is a complex discipline that involves creating detailed, purpose-built designs from genetic parts. This process is often phrased as a Design-Build-Test-Learn loop, where iterative design improvements can be made, implemented, measured, and analyzed. Automation can potentially improve both the end-to-end duration of the process and the utility of data produced by the process. One of the most important considerations for the development of effective automation and quality data is a rigorous description of implicit knowledge encoded as a formal knowledge representation. The development of knowledge representation for the process poses a number of challenges, including developing effective human−machine interfaces, protecting against and repairing user error, providing flexibility for terminological mismatches, and supporting extensibility to new experimental types. We address these challenges with the DARPA SD2 Round Trip software architecture. The Round Trip is an open architecture that automates many of the key steps in the Test and Learn phases of a Design-Build-Test-Learn loop for highthroughput laboratory science. The primary contribution of the Round Trip is to assist with and otherwise automate metadata creation, curation, standardization, and linkage with experimental data. The Round Trip's focus on metadata supports fast, automated, and replicable analysis of experiments as well as experimental situational awareness and experimental interpretability. We highlight the major software components and data representations that enable the Round Trip to speed up the design and analysis of experiments by 2 orders of magnitude over prior ad hoc methods. These contributions support a number of experimental protocols and experimental types, demonstrating the Round Trip's breadth and extensibility. We describe both an illustrative use case using the Round Trip for an on-the-loop experimental campaign and overall contributions to reducing experimental analysis time and increasing data product volume in the SD2 program.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.