This document specifies the TCP Authentication Option (TCP-AO), which obsoletes the TCP MD5 Signature option of RFC 2385 (TCP MD5). TCP-AO specifies the use of stronger Message Authentication Codes (MACs), protects against replays even for long-lived TCP connections, and provides more details on the association of security with TCP connections than TCP MD5. TCP-AO is compatible with either a static Master Key Tuple (MKT) configuration or an external, out-of-band MKT management mechanism; in either case, TCP-AO also protects connections when using the same MKT across repeated instances of a connection, using traffic keys derived from the MKT, and coordinates MKT changes between endpoints. The result is intended to support current infrastructure uses of TCP MD5, such as to protect long-lived connections (as used, e.g., in BGP and LDP), and to support a larger set of MACs with minimal other system and operational changes. TCP-AO uses a different option identifier than TCP MD5, even though TCP-AO and TCP MD5 are never permitted to be used simultaneously. TCP-AO supports IPv6, and is fully compatible with the proposed requirements for the replacement of TCP MD5.
TCP currently recalculates the state of each connection from a fixed set of initial parameters; this recalculation occurs over several round trips, during which the connection can be less than efficient. TCP control block sharing is a technique for reusing information among connections in series and aggregating it among connections in parallel. This paper explores the design space of a modified TCP stack that utilizes these two ideas, and one possible design (E-TCP) is presented in detail. E-TCP has been designed so that the network transmission behavior of group of parallel E-TCP connections closely resembles that of a single TCP/Reno connection. Simulated web accesses using HTTP/1.0 over E-TCP show a significant performance improvement compared to TCP/Reno connection bundles. This paper is first to evaluate performance using four different intra-ensemble schedulers for different workloads. In one scenario simulating a common case, E-TCP is 4-75% faster than Reno for transmitting the HTML parts of various pages, and 17-61% faster transmitting the whole pages. In the same scenario, reusing cached state speeds up repeated E-TCP page accesses by 17-53% for the HTML parts and 10-28% for the whole pages, compared to the initial access. E-TCP can also be integrated with other proposed TCP extensions (such as TCP/Vegas or TCP/SACK), to further improve performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.