We propose giving the mathematical concept of the pseudospectrum a central
role in quantum mechanics with non-Hermitian operators. We relate
pseudospectral properties to quasi-Hermiticity, similarity to self-adjoint
operators, and basis properties of eigenfunctions. The abstract results are
illustrated by unexpected wild properties of operators familiar from
PT-symmetric quantum mechanics.Comment: version accepted for publication in J. Math. Phys.: criterion
excluding basis property (Proposition 6) added, unbounded time-evolution
discussed, new reference
Sharp resolvent bounds for non-selfadjoint semiclassical elliptic quadratic differential operators are established, in the interior of the range of the associated quadratic symbol.
We study resolvents and spectral projections for quadratic differential operators under an assumption of partial ellipticity. We establish exponential-type resolvent bounds for these operators, including Kramers-Fokker-Planck operators with quadratic potentials. For the norms of spectral projections for these operators, we obtain complete asymptotic expansions in dimension one, and for arbitrary dimension, we obtain exponential upper bounds and the rate of exponential growth in a generic situation. We furthermore obtain a complete characterization of those operators with orthogonal spectral projections onto the ground state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.