In this paper we review more than 140 publications and try to not only give a snap shot of the current state of the art research in the area, but also to critically analyse and compare different methodologies used in this research field. Among the investigated intelligent approaches for solving locomotion problems are oscillator based Central Pattern Generators, Neural Networks, Hidden Markov models, Rule Based and Fuzzy Logic systems, as well as Analytical concepts. We try to compare those methods based on the quality of the produced solutions in terms of time, stability, correctness and the expense and cost for achieving them. At the end of each section we list the advantages and disadvantages of the reviewed methods and scrutinize them considering the complexity of the approaches, their applicability to the investigated locomotion tasks and the constraints of the produced solutions. The reviewed publications examine a range of legged and non-legged systems, operating in simple and complex environments, with several different locomotion tasks.
We investigate two modified Quantum Evolutionary methods for solving real value problems. The Quantum Inspired Evolutionary Algorithms (QIEA) were originally used for solving binary encoded problems and their signature features follow superposition of multiple states on a quantum bit and a rotation gate. In order to apply this paradigm to real value problems, we propose two quantum methods Half Significant Bit (HSB) and Stepwise Real QEA (SRQEA), developed using binary and real encoding respectively, while keeping close to the original quantum computing metaphor. We evaluate our approaches against sets of multimodal mathematical test functions and real world problems, using five performance metrics and include comparisons to published results. We report the issues encountered while implementing some of the published real QIEA techniques. Our methods focus on introducing and implementing new rotation gate operators used for evolution, including a novel mechanism for preventing premature convergence in the binary algorithm. The applied performance metrics show superior results for our quantum methods on most of the test problems (especially for the more complex and challenging ones), demonstrating faster convergence and accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.