We present an extension of the alchemical transfer method (ATM) for the estimation of relative binding free energies of molecular complexes applicable to conventional, as well as scaffold-hopping, alchemical transformations. Named ATM-RBFE, the method is implemented in the free and open-source OpenMM molecular simulation package and aims to provide a simpler and more generally applicable route to the calculation of relative binding free energies than what is currently available. ATM-RBFE is based on sound statistical mechanics theory and a novel coordinate perturbation scheme designed to swap the positions of a pair of ligands such that one is transferred from the bulk solvent to the receptor binding site while the other moves simultaneously in the opposite direction. The calculation is conducted directly in a single solvent box with a system prepared with conventional setup tools, without splitting of electrostatic and nonelectrostatic transformations, and without pairwise soft-core potentials. ATM-RBFE is validated here against the absolute binding free energies of the SAMPL8 GDCC host–guest benchmark set and against protein–ligand benchmark sets that include complexes of the estrogen receptor ERα and those of the methyltransferase EZH2. In each case the method yields self-consistent and converged relative binding free energy estimates in agreement with absolute binding free energies and reference literature values, as well as experimental measurements.
The alchemical transfer method (ATM) for the calculation of standard binding free energies of noncovalent molecular complexes is presented. The method is based on a coordinate displacement perturbation of the ligand between the receptor binding site and the explicit solvent bulk and a thermodynamic cycle connected by a symmetric intermediate in which the ligand interacts with the receptor and solvent environments with equal strength. While the approach is alchemical, the implementation of the ATM is as straightforward as that for physical pathway methods of binding. The method is applicable, in principle, with any force field, as it does not require splitting the alchemical transformations into electrostatic and nonelectrostatic steps, and it does not require soft-core pair potentials. We have implemented the ATM as a freely available and open-source plugin of the OpenMM molecular dynamics library. The method and its implementation are validated on the SAMPL6 SAMPLing host− guest benchmark set. The work paves the way to streamlined alchemical relative and absolute binding free energy implementations on many molecular simulation packages and with arbitrary energy functions including polarizable, quantum-mechanical, and artificial neural network potentials.
We present a family of alchemical perturbation potentials that enable the calculation of hydration free energies of small- to medium-sized molecules in a single concerted alchemical coupling step instead of the commonly used sequence of two distinct coupling steps for Lennard-Jones and electrostatic interactions. The perturbation potentials we employ are non-linear functions of the solute–solvent interaction energy designed to focus sampling near entropic bottlenecks along the alchemical pathway. We present a general framework to optimize the parameters of alchemical perturbation potentials of this kind. The optimization procedure is based on the λ-function formalism and the maximum-likelihood parameter estimation procedure we developed earlier to avoid the occurrence of multi-modal distributions of the coupling energy along the alchemical path. A novel soft-core function applied to the overall solute–solvent interaction energy rather than individual interatomic pair potentials critical for this result is also presented. Because it does not require modifications of core force and energy routines, the soft-core formulation can be easily deployed in molecular dynamics simulation codes. We illustrate the method by applying it to the estimation of the hydration free energy in water droplets of compounds of varying size and complexity. In each case, we show that convergence of the hydration free energy is achieved rapidly. This work paves the way for the ongoing development of more streamlined algorithms to estimate free energies of molecular binding with explicit solvation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.