Humans are typically able to keep track of brief changes in their head and body orientation, even when visual and auditory cues are temporarily unavailable. Determining the magnitude of one's displacement from a known location is one form of self-motion updating. Most research on self-motion updating during body rotations has focused on the role of a restricted set of sensory signals (primarily vestibular) available during self-motion. However, humans can and do internally represent spatial aspects of the environment, and little is known about how remembered spatial frameworks may impact angular self-motion updating. Here, we describe an experiment addressing this issue. Participants estimated the magnitude of passive, non-visual body rotations (40 degrees -130 degrees ), using non-visual manual pointing. Prior to each rotation, participants were either allowed full vision of the testing environment, or remained blindfolded. Within-subject response precision was dramatically enhanced when the body rotations were preceded by a visual preview of the surrounding environment; constant (signed) and absolute (unsigned) error were much less affected. These results are informative for future perceptual, cognitive, and neuropsychological studies, and demonstrate the powerful role of stored spatial representations for improving the precision of angular self-motion updating.
Blind walking has become a common measure of perceived target location. This article addresses the possibility that blind walking might vary systematically within an experimental session as participants accrue exposure to nonvisual locomotion. Such variations could complicate the interpretation of blind walking as a measure of perceived location. We measured walked distance, velocity, and pace length in indoor and outdoor environments (1.5-16.0 m target distances). Walked distance increased over 37 trials by approximately 9.33% of the target distance; velocity (and to a lesser extent, pace length) also increased, primarily in the first few trials. In addition, participants exhibited more unintentional forward drift in a blindfolded marching-in-place task after exposure to nonvisual walking. The results suggest that participants not only gain confidence as blind-walking exposure increases, but also adapt to nonvisual walking in a way that biases responses toward progressively longer walked distances.
Many tasks have been used to probe human directional knowledge, but relatively little is known about the comparative merits of different means of indicating target azimuth. Few studies have compared action-based versus non-action-based judgments for targets encircling the observer. This comparison promises to illuminate not only the perception of azimuths in the front and rear hemispaces, but also the frames of reference underlying various azimuth judgments, and ultimately their neural underpinnings. We compared a response in which participants aimed a pointer at a nearby target, with verbal azimuth estimates. Target locations were distributed between 20 degrees and 340 degrees. Non-visual pointing responses exhibited large constant errors (up to -32 degrees) that tended to increase with target eccentricity. Pointing with eyes open also showed large errors (up to -21 degrees). In striking contrast, verbal reports were highly accurate, with constant errors rarely exceeding +/-5 degrees. Under our testing conditions, these results are not likely to stem from differences in perception-based versus action-based responses, but instead reflect the frames of reference underlying the pointing and verbal responses. When participants used the pointer to match the egocentric target azimuth rather than the exocentric target azimuth relative to the pointer, errors were reduced.
Path integration is a process in which observers derive their location by integrating self-motion signals along their locomotion trajectory. Although the medial temporal lobe (MTL) is thought to take part in path integration, the scope of its role for path integration remains unclear. To address this issue, we administered a variety of tasks involving path integration and other related processes to a group of neurosurgical patients whose MTL was unilaterally resected as therapy for epilepsy. These patients were unimpaired relative to neurologically intact controls in many tasks that required integration of various kinds of sensory self-motion information. However, the same patients (especially those who had lesions in the right hemisphere) walked farther than the controls when attempting to walk without vision to a previewed target. Importantly, this task was unique in our test battery in that it allowed participants to form a mental representation of the target location and anticipate their upcoming walking trajectory before they began moving. Thus, these results put forth a new idea that the role of MTL structures for human path integration may stem from their participation in predicting the consequences of one's locomotor actions. The strengths of this new theoretical viewpoint are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.