The purpose of the study was to determine the practice-induced adjustments in the motor-output variability and the agonist-antagonist activity that accompanied improvements in endpoint accuracy of goal-directed isometric contractions in young and old adults. Young and old adults performed 100 trials that involved accurately matching the peak of a force trajectory (25% maximum) to a target force in 150 ms. Endpoint accuracy was quantified as the absolute difference between the target and the peak force and time-to-peak force. Motor-output variability was expressed as the SDs of the force trajectory, peak force, and time-to-peak force. The force and time errors differed between the two groups initially, but after 35 practice trials the errors were similar for the two groups. Reductions in force endpoint error were predicted by decreases in the variability of the force trajectory for both groups, adaptations in the agonist (first dorsal interosseus) and antagonist (second palmar interosseus) EMG for young adults, and adaptations only for the agonist EMG for old adults. Reductions in time endpoint error were predicted by increases in the SD of time-to-peak force and a longer delay to the peak EMG of the antagonist muscle for young adults, but by decreases in the SDs of time-to-peak force and force trajectory and a shorter delay to the peak EMG of the antagonist muscle for the old adults. The findings indicate that the neural adjustments underlying the improvement in endpoint accuracy with practice differed for young and old adults.
The purpose of this study was to compare the discharge characteristics of motor units in the biceps brachii during brief isometric contractions of the elbow flexors as subjects matched either a target force or a target joint angle with the forearm placed in one of two postures. One task required force control to exert a constant force against a rigid restraint (force task), whereas the other task involved position control to maintain a constant elbow angle while supporting an inertial load (position task). The left arm of right-handed subjects was rotated forward so that the upper arm was horizontal and the forearm was vertical. When the elbow flexor muscles were contracted, the wrist exerted a force in a horizontal direction. Subcutaneous electrodes were used to record the discharge of 20 motor units in neutral and supinated forearm postures during both force and position control. Motor unit recruitment thresholds ranged from 1.3 to 37.9% of maximal voluntary contraction force. Discharge rate was similar at the start of the force and position tasks in both the neutral posture (13.1 +/- 0.6 and 12.6 +/- 0.6 pps, P = 0.54) and the supinated posture (14.7 +/- 1.6 and 14.0 +/- 0.9 pps, P = 0.4) and declined during both tasks in the two forearm postures (P < 0.001). Nonetheless, the decrease in discharge rate (P < 0.001), increase in the coefficient of variation for interspike interval (P = 0.04), and increases in the standard deviation of acceleration (P = 0.02) were greatest for the position task in the supinated posture. These findings indicate that the influence of load compliance on the adjustments in motor unit activity during brief isometric contractions with the elbow flexors was modulated by changes in forearm posture.
The minimum variance theory proposes that stronger (larger) muscles produce less variable trajectories compared with weaker (smaller) muscles and thus can accomplish more accurate contractions. The purpose of the study was to determine the influence of muscle size and trajectory variability on the endpoint accuracy of goal-directed isometric contractions. Twelve young (25 +/- 5 years) and 12 old adults (76 +/- 6 years) performed 100 trials with each of two muscles in both hands. Subjects were instructed to match the peak of a force trajectory to a target force by controlling either the abduction (first dorsal interosseus muscle; FDI) or adduction force (second palmar interosseus muscle; SPI) exerted by the index finger of each hand. The time to peak force was 150 ms and the peak force required was 25% of the maximal force that could be achieved in 150 ms. Endpoint accuracy and variability in force and time along with intramuscular EMG activity of the agonist muscle (FDI and SPI) involved in each task were quantified for each set of 100 trials. The MVC force was less for the SPI muscle, and the force endpoint error and variance were greater in the SPI muscle compared with the FDI muscle. Conversely, endpoint measures that included timing were similar for the two muscles. Trajectory variability was greater for the FDI muscle, but did not influence endpoint error for either muscle. The young and old adults had similar strength values, but the old adults were less accurate and more variable than the young subjects. Nonetheless, the accuracy and variability displayed by the old adults for the two muscles was the same as that observed for the young adults. The force accuracy and variability findings are consistent with the predictions of the minimum variance theory that motor-output variability is inversely related to muscle size, strength, and motor unit number.
The purpose of the study was to determine whether pairs of motor units that discharge action potentials at different rates during isometric contractions exhibit different levels of motor unit synchronization or coherence. Twelve subjects (28.6 +/- 6.1 years) performed isometric contractions at target forces slightly above the recruitment threshold (1.02-20.9%) of an isolated motor unit. Based on audio feedback, subjects maintained a relatively constant discharge rate of the isolated unit for about 80 s. Intramuscular electrodes were used to record the discharge of 47 pairs of motor units at rates that ranged from 8.07 to 13.6 pps. Correlated discharge between pairs of motor units was quantified with the common input strength (CIS) index, k' index, and coherence spectrum. Greater discharge rates across pairs of motor units were predicted (R2 = 0.36, P < 0.001) by higher coherence from 8 to 13 Hz (r = -0.52) and lower coherence from 0 to 4 Hz (r = 0.37). Indexes of motor unit synchronization (CIS and k') were strongly associated with motor unit coherence from 16 to 32 Hz (CIS: R2 = 0.63; k': R2 = 0.4; P = 0.001). The CIS index of motor unit synchronization and the motor unit coherence from 16 to 32 Hz did not vary with discharge rate. In contrast, the k' index of motor unit synchronization declined with discharge rate (r2 = 0.20, P = 0.001). Furthermore, greater discharge rates across pairs of motor units were accompanied by higher motor unit coherence in the 8-13 Hz band and lower motor unit coherence in the 0-4 Hz band. These results demonstrate that differences in discharge rate between pairs of motor units in first dorsal interosseus during low-force, isometric contractions were associated with modulation of the correlation in the discharge times of the two motor units at frequencies less than 15 Hz.
The purpose of the study was to quantify the aging-related differences in endpoint accuracy during isometric contractions of the left and right hands based on the prediction that declines in motor performance with aging may be greater for muscles controlled by the right hemisphere. Twelve young (6 men, 25 +/- 5 years) and 12 old (6 men, 76 +/- 6 years) adults performed a task that involved matching the peak of a force-time trajectory to a target. The old adults were less accurate than the young men and exhibited greater endpoint error with the left hand than the right hand on day 1, but not on days 2 and 3. Although electromyographic amplitude was similar between hands, old adults exhibited greater timing variability. These findings indicate that given sufficient practice there was no difference in endpoint accuracy between the left and right hands of old adults, which is not consistent with the prediction of an asymmetrical decline in motor performance by the right-hemisphere aging model. Conversely, an inability by an old adult to achieve similar accuracy with both hands during such tasks likely indicates an underlying motor impairment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.