The molecular basis for the beta-cell dysfunction that characterizes non-insulin-dependent diabetes mellitus (NIDDM) is unknown. The Zucker diabetic fatty (ZDF) male rat is a rodent model of NIDDM with a predictable progression from the prediabetic to the diabetic state. We are using this model to study beta-cell function during the development of diabetes with the goal of identifying genes that play a key role in regulating insulin secretion and, thus, may be potential targets for therapeutic intervention aimed at preserving or improving beta-cell function. As a first step, we have characterized morphology, insulin secretion, and pattern of gene expression in islets from prediabetic and diabetic ZDF rats. The development of diabetes was associated with changes in islet morphology, and the islets of diabetic animals were markedly hypertrophic with multiple irregular projections into the surrounding exocrine pancreas. In addition, there were multiple defects in the normal pattern of insulin secretion. The islets of prediabetic ZDF rats secreted significantly more insulin at each glucose concentration tested and showed a leftward shift in the dose-response curve relating glucose concentration and insulin secretion. Islets of prediabetic animals also demonstrated defects in the normal oscillatory pattern of insulin secretion, indicating the presence of impairment of the normal feedback control between glucose and insulin secretion. The islets from diabetic animals showed further impairment in the ability to respond to a glucose stimulus. Changes in gene expression were also evident in islets from prediabetic and diabetic ZDF rats compared with age-matched control animals. In prediabetic animals, there was no change in insulin mRNA levels. However, there was a significant 30-70% reduction in the levels of a large number of other islet mRNAs including glucokinase, mitochondrial glycerol-3-phosphate dehydrogenase, voltage-dependent Ca2+ and K+ channels, Ca(2+)-ATPase, and transcription factor Islet-1 mRNAs. In addition, there was a 40-50% increase in the levels of glucose-6-phosphatase and 12-lipoxygenase mRNAs. There were further changes in gene expression in the islets from diabetic ZDF rats, including a decrease in insulin mRNA levels that was associated with reduced islet insulin levels. Our results indicate that multiple defects in beta-cell function can be detected in islets of prediabetic animals well before the development of hyperglycemia and suggest that changes in the normal pattern of gene expression contribute to the development of beta-cell dysfunction.
Ultra-wideline 27Al NMR experiments are conducted on coordination compounds with 27Al nuclei possessing immense quadrupolar interactions that result from exceptionally nonspherical coordination environments. NMR spectra are acquired using a methodology involving frequency-stepped, piecewise acquisition of NMR spectra with Hahn-echo or quadrupolar Carr-Purcell Meiboom-Gill (QCPMG) pulse sequences, which is applicable to any half-integer quadrupolar nucleus with extremely broad NMR powder patterns. Despite the large breadth of these central transition powder patterns, ranging from 250 to 700 kHz, the total experimental times are an order of magnitude less than previously reported experiments on analogous complexes with smaller quadrupolar interactions. The complexes examined feature three- or five-coordinate aluminum sites: trismesitylaluminum (AlMes3), tris(bis(trimethylsilyl)amino)aluminum (Al(NTMS2)3), bis[dimethyl tetrahydrofurfuryloxide aluminum] ([Me2-Al(mu-OTHF)]2), and bis[diethyl tetrahydrofurfuryloxide aluminum] ([Et2-Al(mu-OTHF)]2). We report some of the largest 27Al quadrupolar coupling constants measured to date, with values of C(Q)(27Al) of 48.2(1), 36.3(1), 19.9(1), and 19.6(2) MHz for AlMes3, Al(NTMS2)3, [Me2-Al(mu-OTHF)]2, and [Et2-Al(mu-OTHF)]2, respectively. X-ray crystallographic data and theoretical (Hartree-Fock and DFT) calculations of 27Al electric field gradient (EFG) tensors are utilized to examine the relationships between the quadrupolar interactions and molecular structure; in particular, the origin of the immense quadrupolar interaction in the three-coordinate species is studied via analyses of molecular orbitals.
Solid-state 63Cu and 65Cu NMR experiments have been conducted on a series of inorganic and organometallic copper(I) complexes possessing a variety of spherically asymmetric two-, three-, and four-coordinate Cu coordination environments. Variations in structure and symmetry, and corresponding changes in the electric field gradient (EFG) tensors, yield 63/65Cu quadrupolar coupling constants (CQ) ranging from 22.0 to 71.0 MHz for spherically asymmetric Cu sites. These large quadrupolar interactions result in spectra featuring quadrupolar-dominated central transition patterns with breadths ranging from 760 kHz to 6.7 MHz. Accordingly, Hahn-echo and/or QCPMG pulse sequences were applied in a frequency-stepped manner to rapidly acquire high S/N powder patterns. Significant copper chemical shielding anisotropies (CSAs) are also observed in some cases, ranging from 1000 to 1500 ppm. 31P CP/MAS NMR spectra for complexes featuring 63/65Cu-31P spin pairs exhibit residual dipolar coupling and are simulated to determine both the sign of CQ and the EFG tensor orientations relative to the Cu-P bond axes. X-ray crystallographic data and theoretical (Hartree-Fock and density functional theory) calculations of 63/65Cu EFG and CS tensors are utilized to examine the relationships between NMR interaction tensor parameters, the magnitudes and orientations of the principal components, and molecular structure and symmetry.
We report a strategic synthesis of poly(cyclosilane), a well-defined polymer inspired by crystalline silicon. The synthetic strategy relies on the design of a functionalized cyclohexasilane monomer for transition-metal-promoted dehydrocoupling polymerization. Our approach takes advantage of the dual function of the phenylsilyl group, which serves a crucial role both in the synthesis of a novel α,ω-oligosilanyl dianion and as a latent electrophile. We show that the cyclohexasilane monomer prefers a chair conformation. The monomer design ensures enhanced reactivity in transition-metal-promoted dehydrocoupling polymerization relative to secondary silanes, such as methylphenylsilane. Comprehensive NMR spectroscopy yields a detailed picture of the polymer end-group structure and microstructure. Poly(cyclosilane) has red-shifted optical absorbance relative to the monomer. We synthesize a σ-π hybrid donor-acceptor polymer by catalytic hydrosilylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.