This paper introduces the open-source Graphite distributed parallel multicore simulator infrastructure. Graphite is designed from the ground up for exploration of future multicore processors containing dozens, hundreds, or even thousands of cores. It provides high performance for fast design space exploration and software development for future processors. Several techniques are used to achieve this performance including: direct execution, multi-machine distribution, analytical modeling, and lax synchronization. Graphite is capable of accelerating simulations by leveraging several machines. It can distribute simulation of an off-the-shelf threaded application across a cluster of commodity Linux machines with no modification to the source code. It does this by providing a single, shared address space and consistent single-process image across machines. Graphite is designed to be a simulation framework, allowing different component models to be easily replaced to either model different architectures or tradeoff accuracy for performance.We evaluate Graphite from a number of perspectives and demonstrate that it can simulate target architectures containing over 1000 cores on ten 8-core servers. Performance scales well as more machines are added with near linear speedup in many cases. Simulation slowdown is as low as 41× versus native execution for some applications.The Graphite infrastructure and existing models will be released as open-source software to allow the community to simulate their own architectures and extend and improve the framework.
Abstract-With the advent of many-core chips that place substantial demand on the NoC, photonics has been investigated as a promising alternative to electrical NoCs. While numerous opto-electronic NoCs have been proposed, their evaluations tend to be based on fixed numbers for both photonic and electrical components, making it difficult to co-optimize. Through our own forays into opto-electronic NoC design, we observe that photonics and electronics are very much intertwined, reflecting a strong need for a NoC modeling tool that accurately models parameterized electronic and photonic components within a unified framework, capturing their interactions faithfully. In this paper, we present a tool, DSENT, for design space exploration of electrical and opto-electrical networks. We form a framework that constructs basic NoC building blocks from electrical and photonic technology parameters. To demonstrate potential use cases, we perform a network case study illustrating data-rate tradeoffs, a comparison with scaled electrical technology, and sensitivity to photonics parameters.
This paper evaluates the Raw microprocessor. Raw addresses the challenge of building a general-purpose architecture that performs well on a larger class of stream and embedded computing applications than existing microprocessors, while still running existing ILP-based sequential programs with reasonable performance in the face of increasing wire delays. Raw approaches this challenge by implementing plenty of on-chip resources -including logic, wires, and pins -in a tiled arrangement, and exposing them through a new ISA, so that the software can take advantage of these resources for parallel applications. Raw supports both ILP and streams by routing operands between architecturally-exposed functional units over a point-to-point scalar operand network. This network offers low latency for scalar data transport. Raw manages the effect of wire delays by exposing the interconnect and using software to orchestrate both scalar and stream data transport.We have implemented a prototype Raw microprocessor in IBM's 180 nm, 6-layer copper, CMOS 7SF standard-cell ASIC process. We have also implemented ILP and stream compilers. Our evaluation attempts to determine the extent to which Raw succeeds in meeting its goal of serving as a more versatile, general-purpose processor. Central to achieving this goal is Raw's ability to exploit all forms of parallelism, including ILP, DLP, TLP, and Stream parallelism. Specifically, we evaluate the performance of Raw on a diverse set of codes including traditional sequential programs, streaming applications, server workloads and bit-level embedded computation. Our experimental methodology makes use of a cycle-accurate simulator validated against our real hardware. Compared to a 180 nm Pentium-III, using commodity PC memory system components, Raw performs within a factor of 2x for sequential applications with a very low degree of ILP, about 2x to 9x better for higher levels of ILP, and 10x-100x better when highly parallel applications are coded in a stream language or optimized by hand. The paper also proposes a new versatility metric and uses it to discuss the generality of Raw.Clearly, the ALU area is not a significant constraint on the execution width of a modern-day wide-issue microprocessor. On the other hand, the presence of many physical execution units is a minimum prerequisite to the exploitation of the same massive parallelism that ASICs are able to exploit.3. Management of Wires and Wire Delay: ASIC designers can place and wire communicating operations in ways that minimize wire delay, minimize latency, and maximize bandwidth. In contrast, it is now well known that the delay of the interconnect inside traditional microprocessors limits scalability [36,1,15,38,45]. Itanium II's 6-way integer execution unit presents evidence for this -it spends over half of its critical path in the bypass paths of the ALUs. ASIC designers manage wire delay inherent in large distributed arrays of function units in multiple steps. First, they place close together operations that need to communicate fre...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.