OBJECTIVEInflammatory mediators associated with type 1 diabetes are dilute and difficult to measure in the periphery, necessitating development of more sensitive and informative biomarkers for studying diabetogenic mechanisms, assessing preonset risk, and monitoring therapeutic interventions.RESEARCH DESIGN AND METHODSWe previously utilized a novel bioassay in which human type 1 diabetes sera were used to induce a disease-specific transcriptional signature in unrelated, healthy peripheral blood mononuclear cells (PBMCs). Here, we apply this strategy to investigate the inflammatory state associated with type 1 diabetes in biobreeding (BB) rats.RESULTSConsistent with their common susceptibility, sera of both spontaneously diabetic BB DRlyp/lyp and diabetes inducible BB DR+/+ rats induced transcription of cytokines, immune receptors, and signaling molecules in PBMCs of healthy donor rats compared with control sera. Like the human type 1 diabetes signature, the DRlyp/lyp signature, which is associated with progression to diabetes, was differentiated from that of the DR+/+ by induction of many interleukin (IL)-1–regulated genes. Supplementing cultures with an IL-1 receptor antagonist (IL-1Ra) modulated the DRlyp/lyp signature (P < 10−6), while administration of IL-1Ra to DRlyp/lyp rats delayed onset (P = 0.007), and sera of treated animals did not induce the characteristic signature. Consistent with the presence of immunoregulatory cells in DR+/+ rats was induction of a signature possessing negative regulators of transcription and inflammation.CONCLUSIONSParalleling our human studies, serum signatures in BB rats reflect processes associated with progression to type 1 diabetes. Furthermore, these studies support the potential utility of this approach to detect changes in the inflammatory state during therapeutic intervention.
The onset of type 1 diabetes can occur at any age, with as many as half of all cases diagnosed after age 15. Despite this wide distribution in age at diagnosis, most genetic studies focus on cases diagnosed in childhood or during early adulthood. To better understand the genetics of late-onset type 1 diabetes, we collected a Finnish case/control cohort with all cases diagnosed between ages 15 and 40. We genotyped 591 probands and 1,538 control subjects at regions well established as susceptibility loci in early onset type 1 diabetes. These loci were then tested for disease association and age-at-diagnosis effects. Using logistic regression, we found that single-nucleotide polymorphisms (SNPs) at the INS, PTPN22, and IFIH1 loci were associated with late-onset disease (OR (95%CI) = 0.57(0.47-0.69), p = 2.77 x 10(-9); OR (95%CI) = 1.50 (1.27-1.78), p = 3.98 x 10(-6); and OR (95%CI) = 0.81(0.71-0.93), p = 0.0028, respectively). In contrast, a disease association was not detected for two SNPs at the IL2RA locus (rs11594656 and rs41295061). Despite this, we did find an independent age-at-diagnosis effect for each IL2RA SNP using a multivariate Cox proportional hazards model (p = 0.003, 0.002, respectively). Taken together, polymorphisms at the IL2RA locus were a major determinant of age at diagnosis in our cohort with an effect at par with the HLA-DQ2/DQ8 genotype as measured by hazard ratios. These findings suggest that the IL2RA locus controls both the susceptibility to disease and its time of occurrence. Thus, we believe the IL2/IL2R axis represents a potential therapeutic target for delaying the onset of disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.