Cells contain many important protein complexes involved in performing and regulating structural, metabolic, and signaling functions. One major challenge in cell biology is to elucidate the organization and mechanisms of robustness of these complexes in vivo. We developed a systematic approach to study structural dependencies within complexes in living cells by deleting subunits and measuring pairwise interactions among other components. We used our methodology to perturb two conserved eukaryotic complexes: the retromer and the nuclear pore complex. Our results identify subunits that are critical for the assembly of these complexes, reveal their structural architecture, and uncover mechanisms by which protein interactions are modulated. Our results also show that paralogous proteins play a key role in the robustness of protein complexes and shape their assembly landscape. Our approach paves the way for studying the response of protein interactomes to mutations and enhances our understanding of genotype-phenotype maps.
Significance In Parkinson’s disease, alleviating locomotor deficits is a challenge. Clinicians are exploring the deep brain stimulation of the mesencephalic locomotor region, a brainstem region controlling locomotion, but results are mixed. However, the best target in this region in Parkinson’s disease remains unknown. Indeed, this region, which comprises the pedunculopontine and cuneiform nuclei, contains different cell types with opposing effects on locomotor output. Here, using mice in which midbrain dopaminergic cells were damaged by a neurotoxin, we demonstrate that optogenetic activation of glutamatergic neurons in the cuneiform nucleus increases locomotion, controls speed, and evokes limb movements similar to those observed during spontaneous locomotion in intact animals. Our study identifies a potentially clinically relevant target to improve locomotor function in Parkinson’s disease.
A key function of the mesencephalic locomotor region (MLR) is to control the speed of forward symmetrical locomotor movements. However, the ability of freely moving mammals to integrate environmental cues to brake and turn during MLR stimulation is poorly documented. Here, we investigated whether freely behaving mice could brake or turn, based on environmental cues during MLR stimulation. We photostimulated the cuneiform nucleus (part of the MLR) in mice expressing channelrhodopsin in Vglut2-positive neurons in a Cre-dependent manner (Vglut2-ChR2-EYFP) using optogenetics. We detected locomotor movements using deep learning. We used patch-clamp recordings to validate the functional expression of channelrhodopsin and neuroanatomy to visualize the stimulation sites. In the linear corridor, gait diagram and limb kinematics were similar during spontaneous and optogenetic-evoked locomotion. In the open-field arena, optogenetic stimulation of the MLR evoked locomotion, and increasing laser power increased locomotor speed. Mice could brake and make sharp turns (~90°) when approaching a corner during MLR stimulation in the open-field arena. The speed during the turn was scaled with the speed before the turn, and with the turn angle. Patch-clamp recordings in Vglut2-ChR2-EYFP mice show that blue light evoked short-latency spiking in MLR neurons. Our results strengthen the idea that different brainstem neurons convey braking/turning and MLR speed commands in mammals. Our study also shows that Vglut2-positive neurons of the cuneiform nucleus are a relevant target to increase locomotor activity without impeding the ability to brake and turn when approaching obstacles, thus ensuring smooth and adaptable navigation. Our observations may have clinical relevance since cuneiform nucleus stimulation is increasingly considered to improve locomotion function in pathological states such as Parkinson’s disease, spinal cord injury, or stroke.
Co-transmission of glutamate by brain dopaminergic (DA) neurons was recently proposed as a potential factor influencing cell survival in models of Parkinson's disease. Intriguingly, brain DA nuclei are differentially affected in Parkinson's disease. Whether this is associated with different patterns of co-expression of the glutamatergic phenotype along the rostrocaudal brain axis is unknown in mammals. We hypothesized that, as in zebrafish, the glutamatergic phenotype is present preferentially in the caudal mesodiencephalic DA nuclei. Here, we used in mice a cell fate mapping strategy based on reporter protein expression (ZsGreen) consecutive to previous expression of the vesicular glutamate transporter 2 (Vglut2) gene, coupled with immunofluorescence experiments against tyrosine hydroxylase (TH) or dopamine transporter (DAT). We found three expression patterns in DA cells, organized along the rostrocaudal brain axis. The first pattern (TH-positive, DAT-positive, ZsGreenpositive) was found in A8-A10. The second pattern (TH-positive, DAT-negative, ZsGreen-positive) was found in A11. The third pattern (TH-positive, DAT-negative, ZsGreen-negative) was found in A12-A13. These patterns should help to refine the establishment of the homology of DA nuclei between vertebrate species. Our results also uncover that Vglut2 is expressed at some point during cell lifetime in DA nuclei known to degenerate in Parkinson's disease and largely absent from those that are preserved, suggesting that co-expression of the glutamatergic phenotype in DA cells influences their survival in Parkinson's disease.
Background: Stimulation of the Mesencephalic Locomotor Region (MLR) is increasingly considered as a target to improve locomotor function in Parkinson's disease and spinal cord injury. A key function of the MLR is to control the speed of forward symmetrical locomotor movements. However, the ability of freely moving mammals to integrate environmental cues to brake and turn during MLR stimulation is poorly documented. Objective/hypothesis: We investigated whether freely behaving mice could brake or turn based on environmental cues during MLR stimulation. Methods: We stimulated the cuneiform nucleus in mice expressing channelrhodopsin in Vglut2-positive neurons in a Cre-dependent manner (Vglut2-ChR2-EYFP) using optogenetics. We detected locomotor movements using deep learning. We used patch-clamp recordings to validate the functional expression of channelrhodopsin and neuroanatomy to visualize the stimulation sites. Results: Optogenetic stimulation of the MLR evoked locomotion and increasing laser power increased locomotor speed. Gait diagram and limb kinematics were similar during spontaneous and optogenetic-evoked locomotion. Mice could brake and make sharp turns (~90⁰) when approaching a corner during MLR stimulation in an open-field arena. The speed during the turn was scaled with the speed before the turn, and with the turning angle. In a reporter mouse, many Vglut2-ZsGreen neurons were immunopositive for glutamate in the MLR. Patch-clamp recordings in Vglut2-ChR2-EYFP mice show that blue light evoked short latency spiking in MLR neurons. Conclusion: MLR glutamatergic neurons are a relevant target to improve locomotor activity without impeding the ability to brake and turn when approaching an obstacle, thus ensuring smooth and adaptable navigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.