We consider fifty transiting short-period giant planets for which eclipse depths have been measured at multiple infrared wavelengths. The aggregate dayside emission spectrum of these planets exhibits no molecular features, nor is brightness temperature greater in the nearinfrared. We combine brightness temperatures at various infrared wavelengths to estimate the dayside effective temperature of each planet. We find that dayside temperatures are proportional to irradiation temperatures, indicating modest Bond albedo and no internal energy sources, plus weak evidence that dayside temperatures of the hottest planets are disproportionately high. We place joint constraints on Bond albedo, A B , and day-to-night transport efficiency, ε, for six planets by combining thermal eclipse and phase variation measurements (HD 149026b, HD 189733b, HD 209458b, WASP-12b, WASP-18b, and WASP-43b). We confirm that planets with high irradiation temperatures have low heat transport efficiency, and that WASP-43b has inexplicably poor transport; these results are statistically significant even if the precision of single-eclipse measurements has been overstated by a factor of three. Lastly, we attempt to break the A B -ε degeneracy for nine planets with both thermal and optical eclipse observations, but no thermal phase measurements. We find a systematic offset between Bond albedos inferred from thermal phase variations (A B ≈ 0.35) and geometric albedos extracted from visible light measurements (A g ≈ 0.1). These observations can be reconciled if most hot Jupiters have clouds that reflect 30-50 per cent of incident near-infrared radiation, as well as optical absorbers in the cloud particles or above the cloud deck.
We present new 3.6 and 4.5 μm Spitzer phase curves for the highly irradiated hot Jupiter WASP-33b and the unusually dense Saturn-mass planet HD 149026b. As part of this analysis, we develop a new variant of pixel-level decorrelation that is effective at removing intrapixel sensitivity variations for long observations (>10 hr) where the position of the star can vary by a significant fraction of a pixel. Using this algorithm, we measure eclipse depths, phase amplitudes, and phase offsets for both planets at 3.6 and 4.5 μm. We use a simple toy model to show that WASP-33b's phase offset, albedo, and heat recirculation efficiency are largely similar to those of other hot Jupiters despite its very high irradiation. On the other hand, our fits for HD 149026b prefer a very high albedo. We also compare our results to predictions from general circulation models, and we find that while neither planet matches the models well, the discrepancies for HD 149026b are especially large. We speculate that this may be related to its high bulk metallicity, which could lead to enhanced atmospheric opacities and the formation of reflective cloud layers in localized regions of the atmosphere. We then place these two planets in a broader context by exploring relationships between the temperatures, albedos, heat transport efficiencies, and phase offsets of all planets with published thermal phase curves. We find a striking relationship between phase offset and irradiation temperature: the former drops with increasing temperature until around 3400 K and rises thereafter. Although some aspects of this trend are mirrored in the circulation models, there are notable differences that provide important clues for future modeling efforts.
We present full-orbit phase curve observations of the eccentric (e ∼ 0.08) transiting hot Jupiter WASP-14b obtained in the 3.6 and 4.5 μm bands using the Spitzer Space Telescope. We use two different methods for removing the intrapixel sensitivity effect and compare their efficacy in decoupling the instrumental noise. Our measured secondary eclipse depths of 0.1882% ± 0.0048% and 0.2247% ± 0.0086% at 3.6 and 4.5 μm, respectively, are both consistent with a blackbody temperature of 2402 ± 35 K. We place a 2σ upper limit on the nightside flux at 3.6 μm and find it to be 9% ± 1% of the dayside flux, corresponding to a brightness temperature of 1079 K. At 4.5 μm, the minimum planet flux is 30% ± 5% of the maximum flux, corresponding to a brightness temperature of 1380 ± 65 K. We compare our measured phase curves to the predictions of one-dimensional radiative transfer and three-dimensional general circulation models. We find that WASP-14b's measured dayside emission is consistent with a model atmosphere with equilibrium chemistry and a moderate temperature inversion. These same models tend to overpredict the nightside emission at 3.6 μm, while underpredicting the nightside emission at 4.5 μm. We propose that this discrepancy might be explained by an enhanced global C/O ratio. In addition, we find that the phase curves of WASP-14b (7.8 M Jup ) are consistent with a much lower albedo than those of other Jovian mass planets with thermal phase curve measurements, suggesting that it may be emitting detectable heat from the deep atmosphere or interior processes.
We analyze full-orbit phase curve observations of the transiting hot Jupiters WASP-19b and HAT-P-7b at 3.6 and 4.5 μm, obtained using the Spitzer Space Telescope. For WASP-19b, we measure secondary eclipse depths of 0.485% 0.024% and 0.584% 0.029% at 3.6 and 4.5 μm, which are consistent with a single blackbody with effective temperature 2372 ± 60 K. The measured 3.6 and 4.5 μm secondary eclipse depths for HAT-P-7b are 0.156% 0.009% and 0.190% 0.006%, which are well described by a single blackbody with effective temperature 2667 ± 57 K. Comparing the phase curves to the predictions of one-dimensional and threedimensional atmospheric models, we find that WASP-19b's dayside emission is consistent with a model atmosphere with no dayside thermal inversion and moderately efficient day-night circulation. We also detect an eastward-shifted hotspot, which suggests the presence of a superrotating equatorial jet. In contrast, HAT-P-7b's dayside emission suggests a dayside thermal inversion and relatively inefficient day-night circulation; no hotspot shift is detected. For both planets, these same models do not agree with the measured nightside emission. The discrepancies in the model-data comparisons for WASP-19b might be explained by high-altitude silicate clouds on the nightside and/or high atmospheric metallicity, while the very low 3.6 μm nightside planetary brightness for HAT-P-7b may be indicative of an enhanced global C/O ratio. We compute Bond albedos of 0.38 ± 0.06 and 0 (<0.08 at s 1 ) for WASP-19b and HAT-P-7b, respectively. In the context of other planets with thermal phase curve measurements, we show that WASP-19b and HAT-P-7b fit the general trend of decreasing day-night heat recirculation with increasing irradiation.
A planet's emission spectrum contains information about atmospheric composition and structure. We compare the Bayesian Information Criterion (BIC) of blackbody fits and idealized spectral retrieval fits for the 44 planets with published eclipse measurements in multiple thermal wavebands, mostly obtained with the Spitzer Space Telescope. The evidence for spectral features depends on eclipse depth uncertainties. Spitzer has proven capable of eclipse precisions better than 10 −4 when multiple eclipses are analyzed simultaneously, but this feat has only been performed four times. It is harder to self-calibrate photometry when a single occultation is reduced and analyzed in isolation; we find that such measurements have not passed the test of repeatability. Single-eclipse measurements either have an uncertainty floor of 5 × 10 −4 , or their uncertainties have been underestimated by a factor of 3. If one adopts these empirical uncertainties for single-eclipse measurements, then the evidence for molecular features all but disappears: blackbodies have better BIC than spectral retrieval for all planets, save HD 189733b, and the few planets poorly fit by blackbodies are also poorly fit by self-consistent radiative transfer models. This suggests that the features in extant broadband emission spectra are due to astrophysical and instrumental noise rather than molecular bands. Claims of stratospheric inversions, disequilibrium chemistry, and high C/O ratios based solely on photometry are premature. We recommend that observers be cautious of error estimates from self-calibration of small data sets, and that modelers compare the evidence for spectral models to that of simpler models such as blackbodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.