Mitogen-activated protein kinase (MAPK) is an integral component of cellular signaling during mitogenesis and differentiation of mitotic cells. Recently MAPK activation in post-mitotic cells has been implicated in hippocampal long-term potentiation (LTP), a potential cellular mechanism of learning and memory. Here we investigate the involvement of MAPK in learning and memory in behaving animals. MAPK activation increased in the rat hippocampus after an associative learning task, contextual fear conditioning. Two other protein kinases known to be activated during hippocampal LTP, protein kinase C and alpha-calcium/calmodulin protein kinase II, also were activated in the hippocampus after learning. Inhibition of the specific upstream activator of MAPK, MAPK kinase (MEK), blocked fear conditioning. Thus, classical conditioning in mammals activates MAPK, which is necessary for consolidation of the resultant learning.
Activation of the mitogen-activated protein kinase (MAPK) cascade recently was discovered to play an important role in synaptic plasticity in area CA1 of rat hippocampus. However, the upstream mechanisms regulating MAPK activity and the downstream effectors of MAPK in the hippocampus are uncharacterized. In the present studies we observed that hippocampal MAPK activation is regulated by both the PKA and PKC systems; moreover, we found that a wide variety of neuromodulatory neurotransmitter receptors (metabotropic glutamate receptors, muscarinic acetylcholine receptors, dopamine receptors, and beta-adrenergic receptors) couple to MAPK activation via these two cascades. In additional studies we observed that PKC is a powerful regulator of CREB phosphorylation in area CA1. MAPK plays a critical role in transcriptional regulation by PKC, because MAPK activation is a necessary component for increased CREB phosphorylation in response to the activation of this kinase. Surprisingly, we also observed that MAPK activation is necessary for PKA coupling to CREB phosphorylation in area CA1. Overall, these studies indicate an unexpected richness of diversity in the regulation of MAPK in the hippocampus and suggest the possibility of a broad role for the MAPK cascade in regulating gene expression in long-term forms of hippocampal synaptic plasticity.
Although the biochemical mechanisms underlying learning and memory have not yet been fully elucidated, mounting evidence suggests that activation of protein kinases and phosphorylation of their downstream effectors plays a major role. Recent findings in our laboratory have shown a requirement for the mitogen-activated protein kinase (MAPK) cascade in hippocampal synaptic plasticity. Therefore, we used an inhibitor of MAPK activation, SL327, to test the role of the MAPK cascade in hippocampus-dependent learning in mice. SL327, which crosses the blood-brain barrier, was administered intraperitoneally at several concentrations to animals prior to cue and contextual fear conditioning. Administration of SL327 completely blocked contextual fear conditioning and significantly attenuated cue learning when measured 24 hr after training. To determine whether MAPK activation is required for spatial learning, we administered SL327 to mice prior to training in the Morris water maze. Animals treated with SL327 exhibited significant attenuation of water maze learning; they took significantly longer to find a hidden platform compared with vehicle-treated controls and also failed to use a selective search strategy during subsequent probe trials in which the platform was removed. These impairments cannot be attributed to nonspecific effects of the drug during the training phase; no deficit was seen in the visible platform task, and injection of SL327 following training produced no effect on the performance of these mice in the hidden platform task. These findings indicate that the MAPK cascade is required for spatial and contextual learning in mice.
The extracellular signal-regulated kinases (ERKs) are members of the mitogen-activated protein kinase (MAPK) superfamily of enzymes and have recently garnered considerable attention in the field of learning and memory. ERK activation has been shown to be required for the induction of long-term potentiation (LTP) in the rat hippocampus and for the formation of associative and spatial memories in both the rat and the mouse. However, the individual roles for the two isoforms of ERK have yet to be deciphered. To investigate the specific contribution of the ERK1 (p44) isoform of MAPK to mammalian learning, we performed a general behavioral and physiological characterization of mice lacking the ERK1 gene. The ERK1-null animals demonstrated significantly higher levels of activity in the open field test. However, we observed no other discernible deficits in the ERK1 knockout mice in our behavioral testing. Specifically, no differences were observed in the acquisition or retention (24 h and 2 wk after training) of either contextual or cue fear conditioning between the ERK1 −/− and their wild-type littermate controls. In addition, no learning phenotype was observed in the passive avoidance test. When hippocampal slices were analyzed, we found no deficits in baseline synaptic transmission or in tetanus-induced LTP in hippocampal area CA1. We found no apparent compensatory changes in the expression of ERK2 (p42 MAPK). We conclude that hippocampus-and amygdala-dependent emotional learning does not depend critically on the activity of ERK1.The cellular processes underlying learning and the formation of memory involve the regulation of synaptic strength as well as the establishment of new synaptic connections. The mechanisms by which neuronal activity is translated into changes in synaptic organization have received considerable attention. The recognition that intracellular signaling pathways involving protein kinases are essential intermediates in the induction of long-term changes in synaptic strength represents a significant advance in our understanding of the molecular mechanisms of learning and memory. The MAP kinases have been shown to be critically involved in the formation of long-term memory (Kornhauser and Greenberg 1997). Originally discovered as regulators of cell division and differentiation, mitogen-activated protein kinases (MAPKs) are abundantly expressed in neurons in the mature central nervous system. Recently, their role in these nondividing, terminally differentiated neurons has come under investigation.A number of previous studies have demonstrated a major role for MAPK in mammalian associative learning. Our laboratory has previously shown activation of extracellular signal-regulated kinase (ERK) isoforms of MAPK in the rat hippocampus following a cue and contextual fear-conditioning paradigm. In addition, intraperitoneal injection of an inhibitor of MAPK kinase (MEK), the upstream activator of MAPK, blocked fear conditioning in these animals (Atkins et al. 1998). Preventing MAPK activation with a MEK inhi...
Induction and expression of long-term potentiation (LTP) in area CA1 of the hippocampus require the coordinated regulation of several cellular processes. We found that LTP in area CA1 was associated with an N-methyl-D-aspartate (NMDA) receptor-dependent increase in glutamate uptake. The increase in glutamate uptake was inhibited by either removal of Na+ or addition of D,L-threo-beta-hydroxyaspartate. Dihydrokainate (DHK), a specific inhibitor of the glial glutamate transporter GLT-1, did not block the increase in glutamate uptake. LTP was also associated with a translocation of the EAAC1 glutamate transporter from the cytosol to the plasma membrane. Contextual fear conditioning increased the maximum rate (Vmax) of glutamate uptake and membrane expression of EAAC1 in area CA1. These results indicate that regulation of glutamate uptake may be important for maintaining the level of synaptic strength during long-term changes in synaptic efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.