Optical coherence tomography (OCT) images of the retina are inevitably affected by the finite width of the coherence function and noise. To make low-reflective layers visible, the raw OCT signal is log transformed; to reduce the effect of noise the images can be low-pass filtered. We determined the effects of these operations on layer thickness assessment, as a function of signal-to-noise ratio (SNR), by performing measurements in a phantom eye and modeling. The log transform appeared to be the key factor in a SNR-dependent overestimation of peak widths and a less predictive bias in the widths of low-reflective layers.
As data acquisition for retinal imaging with optical coherence tomography (OCT) becomes faster, efficient collection of photons becomes more important to maintain image quality. One approach is to use a larger aperture at the eye's pupil to collect more photons that have been reflected from the retina. A 2.8‐mm beam diameter system with only seven reflecting surfaces was developed for low‐loss retinal imaging. The larger beam size requires defocus and astigmatism correction, which was done in a closed loop adaptive optics method using a Shack‐Hartmann wavefront sensor and a deformable mirror (DM) with 140 actuators and a ±2.75 μm stroke. This DM facilitates defocus correction ranging from approximately −3 D to +3 D. Comparing the new system with a standard 1.2‐mm system on a model eye, a signal‐to‐noise gain of 4.5 dB and a 2.3 times smaller speckle size were measured. Measurements on the retinas of five subjects showed even better results, with increases in dynamic range up to 13 dB. Note that the new sample arm only occupies 30 cm × 60 cm, which makes it highly suitable for imaging in a clinical environment.
Figure: B‐scan images obtained over a width of 8 deg from the right eye of a 31‐year‐old Caucasian male. While the left side was imaged with a standard 1.2‐mm OCT system, the right side was imaged with the 2.8‐mm system. Both images were collected with the same integration time and incident power, after correction of aberrations. Using the dynamic range within the images, which is determined by comparing the highest pixel value to the noise floor, a difference in dynamic range of 10.8 dB was measured between the two systems.
The laser beam waist has an impact both in the sensitivity and systematic effects present in gravimetry and atom interferometry in general. In this paper we consider how different effects contribute to both aspects in order to make a better selection of the radius of the Raman beam given a particular laser power available. A large beam waist reduces systematic effects coming from wavefront curvature and Gouy phase contributions and improves the fringe contrast due to reduced intensity gradients. On the other hand, a large waist gives a smaller Rabi frequency, which lowers the sensitivity by reducing the fraction of atoms in the selected velocity range. Considering all contributions, we find that systematic effects usually have a dominant role in selecting a beam waist.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.