This paper presents vbench, a publicly available benchmark for cloud video services. We are the first study, to the best of our knowledge, to characterize the emerging video-as-aservice workload. Unlike prior video processing benchmarks, vbench's videos are algorithmically selected to represent a large commercial corpus of millions of videos. Reflecting the complex infrastructure that processes and hosts these videos, vbench includes carefully constructed metrics and baselines. The combination of validated corpus, baselines, and metrics reveal nuanced tradeoffs between speed, quality, and compression. We demonstrate the importance of video selection with a microarchitectural study of cache, branch, and SIMD behavior. vbench reveals trends from the commercial corpus that are not visible in other video corpuses. Our experiments with GPUs under vbench's scoring scenarios reveal that context is critical: GPUs are well suited for live-streaming, while for video-on-demand shift costs from compute to storage and network. Counterintuitively, they are not viable for popular videos, for which highly compressed, high quality copies are required. We instead find that popular videos are currently well-served by the current trajectory of software encoders.
This paper presents vbench, a publicly available benchmark for cloud video services. We are the first study, to the best of our knowledge, to characterize the emerging video-as-aservice workload. Unlike prior video processing benchmarks, vbench's videos are algorithmically selected to represent a large commercial corpus of millions of videos. Reflecting the complex infrastructure that processes and hosts these videos, vbench includes carefully constructed metrics and baselines. The combination of validated corpus, baselines, and metrics reveal nuanced tradeoffs between speed, quality, and compression. We demonstrate the importance of video selection with a microarchitectural study of cache, branch, and SIMD behavior. vbench reveals trends from the commercial corpus that are not visible in other video corpuses. Our experiments with GPUs under vbench's scoring scenarios reveal that context is critical: GPUs are well suited for live-streaming, while for video-on-demand shift costs from compute to storage and network. Counterintuitively, they are not viable for popular videos, for which highly compressed, high quality copies are required. We instead find that popular videos are currently well-served by the current trajectory of software encoders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.