The Nevada Rural Ozone Initiative (NVROI) was established to better understand O3 concentrations in the Western United States (US). The major working hypothesis for development of the sampling network was that the sources of O3 to Nevada are regional and global. Within the framework of this overarching hypothesis, we specifically address two conceptual meteorological hypotheses: (1) The high elevation, complex terrain, and deep convective mixing that characterize Nevada, make this state ideally located to intercept polluted parcels of air transported into the US from the free troposphere; and (2) site specific terrain features will influence O3 concentrations observed at surface sites. Here, the impact of complex terrain and site location on observations are discussed. Data collected in Nevada at 6 sites (1385 to 2082 m above sea level (asl)) are compared with that collected at high elevation sites in Yosemite National Park and the White Mountains, California. Average daily maximum 1-hour concentrations of O3 during the first year of the NVROI ranged from 58 to 69 ppbv (spring), 53 to 62 ppbv (summer), 44 to 49 ppbv (fall), and 37 to 45 ppbv (winter). These were similar to those measured at 3 sites in Yosemite National Park (2022 to 3031 m asl), and at 4 sites in the White Mountains (1237 to 4342 m asl) (58 to 67 ppbv (summer) and 47 to 58 ppbv (fall)). Results show, that in complex terrain, collection of data should occur at high and low elevation sites to capture surface impacts, and site location with respect to topography should be considered. Additionally, concentrations measured are above the threshold reported for causing a reduction in growth and visible injury for plants (40 ppbv), and sustained exposure at high elevation locations in the Western USA may be detrimental for ecosystems.
We present room temperature photo‐absorption cross sections between 180 and 340 nm for potassium nitrate dissolved in sulfuric acid‐water solutions of 0, 80, and 96% sulfuric acid by mass. Other investigators have obtained ultraviolet absorption spectra for similar solutions above 220 nm, and there is a large literature on the spectra, species, and nitration reactions in sulfuric acid solutions. The predominant nitrogen‐containing species are the nitrate anion (NO3−) in pure water or dilute sulfuric acid solutions, molecular nitric acid (HNO3) in 80% sulfuric acid, and the nitronium ion (NO2+) in 96% sulfuric acid. Upon reviewing the literature involving these species, we consider elementary ionic and molecular reactions in mechanisms of stratospheric heterogeneous catalysis. We formulate a general mechanism for acid catalyzed reactions, with examples that convert inactive HCl and ClNO3 into photochemically active ClNO2, ClNO, Cl2, HOCl, and ClO, and we show that reactions forming all of these products are thermodynamically allowed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.