Combined PET/computed tomography (CT) is of value in cancer diagnosis, follow-up, and treatment planning. For cancers located in the thorax or abdomen, the patient’s breathing causes artifacts and errors in PET and CT images. Many different approaches for artifact avoidance or correction have been developed; most are based on gated acquisition and synchronization between the respiratory signal and PET acquisition. The respiratory signal is usually produced by an external sensor that tracks a physiological characteristic related to the patient’s breathing. Respiratory gating is a compensation technique in which time or amplitude binning is used to exclude the motion in reconstructed PET images. Although this technique is performed in routine clinical practice, it fails to adequately correct for respiratory motion because each gate can mix several tissue positions. Researchers have suggested either selecting PET events from gated acquisitions or performing several PET acquisitions (corresponding to a breath-hold CT position). However, the PET acquisition time must be increased if adequate counting statistics are to be obtained in the different gates after binning. Hence, other researchers have assessed correction techniques that take account of all the counting statistics (without increasing the acquisition duration) and integrate motion information before, during, or after the reconstruction process. Here, we provide an overview of how motion is managed to overcome respiratory motion in PET/CT images.
Background Changes in blood volume in the intracranial arteries and the resulting oscillations of brain parenchyma have been presumed as main initiating factors of cerebrospinal fluid (CSF) pulsations. However, respiration has been recently supposed to influence CSF dynamics via thoracic pressure changes. Purpose To measure blood and CSF cervical flow and quantify the contribution of cardiac and respiratory cycles on the subsequent signal evolution. Material and Methods Sixteen volunteers were enrolled. All participant underwent two-dimensional fast field echo echo planar imaging (FFE-EPI). Regions of interest were placed on internal carotids, jugular veins, and rachidian canal to extract temporal profiles. Spectral analysis was performed to extract respiratory and cardiac frequencies. The contribution of respiration and cardiac activity was assessed to signal evolution by applying a multiple linear model. Results Mean respiratory frequency was 14.6 ± 3.9 cycles per min and mean heart rate was 66.8 ± 9 cycles per min. Cardiac contribution was higher than breathing for internal carotids, explaining 74.68% and 10.27% of the signal variance, respectively. For the jugular veins, respiratory component was higher than the cardiac one contributing 44.28% and 6.53% of the signal variance, respectively. For CSF, breathing and cardiac component contributed less than half of signal variance (12.61% and 23.23%, respectively). Conclusion Respiration and cardiac activity both influence fluid flow at the cervical level. Arterial inflow is driven by the cardiac pool whereas venous blood aspiration seems more due to thoracic pressure changes. CSF dynamics acts as a buffer between these two blood compartments.
Photodynamic therapy (PDT) is a promising therapeutic strategy for cancers where surgery and radiotherapy cannot be effective. PDT relies on the photoactivation of photosensitizers, most of the time by lasers to produced reactive oxygen species and notably singlet oxygen. The major drawback of this strategy is the weak light penetration in the tissues. To overcome this issue, recent studies proposed to generate visible light in situ with radioactive isotopes emitting charged particles able to produce Cerenkov radiation. In vitro and preclinical results are appealing, but the existence of a true, lethal phototherapeutic effect is still controversial. In this article, we have reviewed previous original works dealing with Cerenkov-induced PDT (CR-PDT). Moreover, we propose a simple analytical equation resolution to demonstrate that Cerenkov light can potentially generate a photo-therapeutic effect, although most of the Cerenkov photons are emitted in the UV-B and UV-C domains. We suggest that CR-PDT and direct UV-tissue interaction act synergistically to yield the therapeutic effect observed in the literature. Moreover, adding a nanoscintillator in the photosensitizer vicinity would increase the PDT efficacy, as it will convert Cerenkov UV photons to light absorbed by the photosensitizer.
A CT-based RG-PET processing method can be implemented in clinical practice with a small increase in radiation exposure. It improves PET-CT co-registration of lung lesions and should lead to more accurate attenuation correction and thus SUV measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.