Macrophages are viewed as amplifiers of ischemic brain injury, but the origin of injury-producing macrophages is poorly defined. The role of resident brain macrophages—microglial cells—in stroke remains controversial. To determine if microglial cells exert injurious effects after neonatal focal stroke, we selectively depleted these cells with intracerebral injection of liposome-encapsulated clodronate before transient middle cerebral artery occlusion in postnatal day seven rats. Phagocytosis of apoptotic neurons by activated microglia was poor in animals with unmanipulated microglia, and depletion of these cells did not increase the number of apoptotic neurons. Lack of microglia increased the brain levels of several cytokines and chemokines already elevated by ischemia–reperfusion, and also increased the severity and volume of injury, suggesting that microglial cells contribute to endogenous protection during the subacute injury phase. Then, to determine if accumulation of reactive oxygen species in microglia adversely affects phagocytosis of dying neurons and contributes to injury, we delivered reduced glutathione (GSH) into microglia, again using liposomes. Remarkably, pharmacologically increased intracellular GSH concentrations in microglia induced superoxide accumulation in lipid rafts in these cells, further increased the brain levels of macrophage chemoattractants, and exacerbated injury. Taken together, these data show that microglia are part of the endogenous defense mechanisms and that, while antioxidants can protect the injured neonatal brain, high levels of reducing equivalents in activated microglia, GSH, trigger superoxide production, favor the reorganization of lipids, amplify local inflammation and exacerbate injury.
The immaturity of the CNS at birth greatly affects injury after stroke but the contribution of the blood-brain barrier (BBB) to the differential response to stroke in adults and neonates is poorly understood. We asked if the structure and function of the BBB is disrupted differently in neonatal and adult rats by transient middle cerebral artery occlusion. In adult rats, albumin leakage into injured regions was markedly increased during 2–24 h reperfusion but leakage remained low in the neonates. Functional assays employing intravascular tracers in the neonates showed that BBB permeability to both large (70-kDa dextran) and small (3-kDa dextran, Gd-DTPA) tracers remained largely undisturbed 24h after reperfusion. The profoundly different functional integrity of the BBB was associated with the largely nonoverlapping patterns of regulated genes in endothelial cells purified from injured and uninjured adult and neonatal brain at 24h (endothelial transcriptome, 31,042 total probe sets). Within significantly regulated 1,266 probe sets in injured adults and 361 probe sets in neonates, changes in the gene expression of the basal lamina components, adhesion molecules, the tight junction protein occludin, and MMP-9 were among the key differences. The protein expression of collagen-IV, laminin, claudin-5, occludin and ZO-1 was also better preserved in neonatal rats. Neutrophil infiltration remained low in acutely injured neonates but neutralization of CINC-1 in the systemic circulation enhanced neutrophil infiltration, BBB permeability and injury. The markedly more integrant BBB in neonatal brain than in adult brain after acute stroke may have major implications for the treatment of neonatal stroke.
OBJECTIVES The scavenger receptor CD36 is injurious in acute experimental focal stroke and neurodegenerative diseases in the adult. We investigated the effects of genetic deletion of CD36 (CD36ko) on acute injury, and oxidative and inflammatory signaling after neonatal stroke. METHODS P9 CD36ko and wild type (WT) mice were subjected to a transient middle cerebral artery occlusion (MCAO). Injury, phagocytosis of dying cells, and CD36 inflammatory signaling were determined. RESULTS While the volume of “tissue at risk” by diffusion-weighted MRI during MCAO was similar in neonatal CD36ko and WT mice, by 24 hrs after reperfusion, injury was more severe in CD36ko and was associated with increased caspase-3 cleavage and reduced engulfment of neurons expressing cleaved caspase-3 by activated microglia. No significant superoxide generation was observed in activated microglia in injured WT whereas increased superoxide production in vessels and NFκB activation induced by MCAO were unaffected by lack of CD36. While Lyn expression was higher in injured CD36ko, cell-type specific patterns of Lyn expression were altered; Lyn was expressed in endothelial cells and microglia in WT but predominantly in dying neurons in CD36ko. Interpretation Lack of CD36 results in poorer short-term outcome from neonatal focal stroke due to lack of attenuation of NFκB-mediated inflammation and diminished removal of apoptotic neuronal debris. While inhibition of CD36 does not seem to be a good therapeutic target for protection after acute neonatal stroke, like it is after adult stroke, seeking better understanding of CD36 signaling in particular cell populations may reveal important therapeutic targets for neonatal stroke.
Perinatal stroke leads to significant morbidity and long-term neurological and cognitive deficits. The pathophysiological mechanisms of brain damage depend on brain maturation at the time of stroke. To understand whether microglial cells limit injury after neonatal stroke by preserving neurovascular integrity, we subjected postnatal day 7 (P7) rats depleted of microglial cells, rats with inhibited microglial TGFbr2/ALK5 signaling, and corresponding controls, to transient middle cerebral artery occlusion (tMCAO). Microglial depletion by intracerebral injection of liposome-encapsulated clodronate at P5 significantly reduced vessel coverage and triggered hemorrhages in injured regions 24 h after tMCAO. Lack of microglia did not alter expression or intracellular redistribution of several tight junction proteins, did not affect degradation of collagen IV induced by the tMCAO, but altered cell types producing TGF1 and the phosphorylation and intracellular distribution of SMAD2/3. Selective inhibition of TGFbr2/ALK5 signaling in microglia via intracerebral liposomeencapsulated SB-431542 delivery triggered hemorrhages after tMCAO, demonstrating that TGF1/TGFbr2/ALK5 signaling in microglia protects from hemorrhages. Consistent with observations in neonatal rats, depletion of microglia before tMCAO in P9 Cx3cr1 GFP/ϩ / Ccr2 RFP/ϩ mice exacerbated injury and induced hemorrhages at 24 h. The effects were independent of infiltration of Ccr2 RFP/ϩ monocytes into injured regions. Cumulatively, in two species, we show that microglial cells protect neonatal brain from hemorrhage after acute ischemic stroke.
SFKs may play an important role in NMDAR-mediated excitotoxicity and downstream events leading to neuronal death after neonatal HI. Inhibition of SFKs may provide protection against neonatal stroke. Rather than blockade of NMDAR after HI in the developing brain, it may be safer and more beneficial to manipulate components of the NMDAR signaling complex at the postsynaptic density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.