Grasslands deliver a range of ecosystem services, including the provision of food and biodiversity, and regulation of soil carbon storage and hydrology. Monitoring schemes are needed to quantify spatial changes in these multiple functions alongside ecosystem degradation. Sward height is widely recognised as a key spatial variable in the provision of these services. Current manual monitoring approaches are labour intensive, and often fail to capture spatial patterns of important features, including sward height. Proximal sensing from small aerial drones carrying lightweight cameras can be transformed into surface height models using image‐based structure‐from‐motion and Multi‐View Stereo‐based approaches; this presents a new opportunity for monitoring the spatial structure of grassland sward height. We combined aerial photographs with field survey data and an open‐source image‐based modelling‐processing workflow to generate sward height measurements for a field comprising mainly Lolium perenne (perennial ryegrass) and Trifolium pratense (red clover). We compared the derived measurements with in situ data captured on the same day using traditional agronomic sward height techniques to determine the quality of the drone‐derived surface model product for sward characterisation. The SfM and Multi‐View Stereo‐based surface model had a mean absolute sward height measurement error of between 3.7 and 4.2 cm. To produce field observations with equivalent quality would require up to 550 sward height measurements for the study site (area: 8,059 m2), which is not feasible over larger extents required for conservation of key species or agronomic purposes. Synthesis and applications. We demonstrate how the collection of precise and detailed information on the spatial structure of grasslands can be made over management‐relevant extents. Aerial digital photographs can be transformed into surface models using an image‐based modelling approach: structure‐from‐motion and Multi‐View Stereo techniques. Image‐based measurements of sward heights were compared with manual sward height data captured on the same day. This novel source of vegetation spatial information could improve sward management for conservation and agronomy applications. The approach supports frequent surveys, at user‐controlled revisit times, and delivers data for spatial monitoring of key grassland functions and services.
Image‐based modeling, and more precisely, Structure from Motion (SfM) and Multi‐View Stereo (MVS), is emerging as a flexible, self‐service, remote sensing tool for generating fine‐grained digital surface models (DSMs) in the Earth sciences and ecology. However, drone‐based SfM + MVS applications have developed at a rapid pace over the past decade and there are now many software options available for data processing. Consequently, understanding of reproducibility issues caused by variations in software choice and their influence on data quality is relatively poorly understood. This understanding is crucial for the development of SfM + MVS if it is to fulfill a role as a new quantitative remote sensing tool to inform management frameworks and species conservation schemes. To address this knowledge gap, a lightweight multirotor drone carrying a Ricoh GR II consumer‐grade camera was used to capture replicate, centimeter‐resolution image datasets of a temperate, intensively managed grassland ecosystem. These data allowed the exploration of method reproducibility and the impact of SfM + MVS software choice on derived vegetation canopy height measurement accuracy. The quality of DSM height measurements derived from four different, yet widely used SfM‐MVS software—Photoscan, Pix4D, 3DFlow Zephyr, and MICMAC, was compared with in situ data captured on the same day as image capture. We used both traditional agronomic techniques for measuring sward height, and a high accuracy and precision differential GPS survey to generate independent measurements of the underlying ground surface elevation. Using the same replicate image dataset (n = 3) as input, we demonstrate that there are 1.7, 2.0, and 2.5 cm differences in RMSE (excluding one outlier) between the outputs from different SfM + MVS software using High, Medium, and Low quality settings, respectively. Furthermore, we show that there can be a significant difference, although of small overall magnitude between replicate image datasets (n = 3) processed using the same SfM + MVS software, following the same workflow, with a variance in RMSE of up to 1.3, 1.5, and 2.7 cm (excluding one outlier) for “High,” “Medium,” and “Low” quality settings, respectively. We conclude that SfM + MVS software choice does matter, although the differences between products processed using “High” and “Medium” quality settings are of small overall magnitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.