The tomato leafminer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is a devastating pest of tomato originating from South America. After its initial detection in eastern Spain in 2006, it rapidly invaded various other European countries and spread throughout the Mediterranean basin. If no control measures are taken, then the pest can cause up to 80-100% yield losses in tomato crops in recently invaded areas and may pose a threat to both greenhouse and open-field tomato production. The exceptional speed and extent of T. absoluta invasion have called for studies documenting its biology and ecology, while indicating an urgent need for efficient and sustainable management methods. The development of approaches to manage T. absoluta would be facilitated through a detailed revision of information on this pest in its area of origin. This review combines information on the invasion by T. absoluta, its ecology, and potential management strategies, including data that may help the implementation of efficient biological control programs. These programs, together with a variety of other management tactics, may allow efficient integrated pest management of T. absoluta in Europe and Mediterranean Basin countries.
Since its detection in the Mediterranean basin at the end of 2006 and later in other European countries, the South American tomato pinworm, Tuta absoluta (Meyrick), has become a serious threat to tomato crops. In newly infested areas, it is especially problematic during the first years of its presence. Nevertheless, after 2-3 years, the incidence of T. absoluta has become less severe in certain areas. There are several factors contributing to this decline, such as the increase in growers' knowledge of pest behaviour and biology and the correct application of integrated pest control strategies. The impact of opportunistic native natural enemies (fortuitous biological control) should be considered as one of the key factors in this decline. In this review, available information on indigenous natural enemies is updated, and the current pest management approaches used against T. absoluta are addressed. Finally, future scenarios for biological control of this pest are discussed.
The parasitic mite Varroa destructor has a significant worldwide impact on bee colony health. In the absence of control measures, parasitized colonies invariably collapse within 3 years. The synthetic pyrethroids tau-fluvalinate and flumethrin have proven very effective at managing this mite within apiaries, but intensive control programs based mainly on one active ingredient have led to many reports of pyrethroid resistance. In Europe, a modification of leucine to valine at position 925 (L925V) of the V. destructor voltage-gated sodium channel was correlated with resistance, the mutation being found at high frequency exclusively in hives with a recent history of pyrethroid treatment. Here, we identify two novel mutations, L925M and L925I, in tau-fluvalinate resistant V. destructor collected at seven sites across Florida and Georgia in the Southeastern region of the USA. Using a multiplexed TaqMan® allelic discrimination assay, these mutations were found to be present in 98% of the mites surviving tau-fluvalinate treatment. The mutations were also found in 45% of the non-treated mites, suggesting a high potential for resistance evolution if selection pressure is applied. The results from a more extensive monitoring programme, using the Taqman® assay described here, would clearly help beekeepers with their decision making as to when to include or exclude pyrethroid control products and thereby facilitate more effective mite management programmes.
The tomato borer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), is considered to be one of the most devastating pests affecting tomato crops in South America, where crop losses range from 60 to 100%. After its detection in the Spanish tomato-growing area at the end of 2006, it spread quickly to other European and northern African countries. Currently, T. absoluta management in these countries is mainly based on chemical treatments. Nonetheless, special emphasis is being placed on implementing environmentally safe strategies. Commercial formulates based on Bacillus thuringiensis may be a good alternative, as they have been used to control other insect pests successfully. The laboratory, greenhouse, and open-field experiments presented in this work are evidence that B. thuringiensis is highly efficient in controlling T. absoluta. First instar larvae were the most susceptible, while susceptibility was lower in second and third instar larvae. Our results have shown that the impact of T. absoluta can be greatly reduced by spraying only B. thuringiensis-based formulates, with no need for chemical insecticides. Furthermore, the integration of this technology with other biological control methods focused on T. absoluta eggs, such as the use of mirid predators or parasitoids, could reduce the number of B. thuringiensis treatments and the use of chemicals, with the consequent reduction of residues on fruits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.