Amazonian biodiversity is increasingly threatened due to the weakening of policies for combating deforestation, especially in Brazil. Loss of animal and plant species, many not yet known to science, is just one among many negative consequences of Amazon deforestation. Deforestation affects indigenous communities, riverside as well as urban populations, and even planetary health. Amazonia has a prominent role in regulating the Earth's climate, with forest loss contributing to rising regional and global temperatures and intensification of extreme weather events. These climatic conditions are important drivers of emerging infectious diseases, and activities associated with deforestation contribute to the spread of disease vectors. This review presents the main impacts of Amazon deforestation on infectious-disease dynamics and public health from a One Health perspective. Because Brazil holds the largest area of Amazon rainforest, emphasis is given to the Brazilian scenario. Finally, potential solutions to mitigate deforestation and emerging infectious diseases are presented from the perspectives of researchers in different fields.
The transmission of pathogens from wild animals to humans is called "zoonotic spillover" . Most human infectious diseases (60-75%) are derived from pathogens that originally circulated in non-human animal species. This demonstrates that spillover has a fundamental role in the emergence of new human infectious diseases. Understanding the factors that facilitate the transmission of pathogens from wild animals to humans is essential to establish strategies focused on the reduction of the frequency of spillover events. In this context, this article describes the basic aspects of zoonotic spillover and the main factors involved in spillover events, considering the role of the inter-species interactions, phylogenetic distance between host species, environmental drivers, and specific characteristics of the pathogens, animals, and humans. As an example, the factors involved in the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic are discussed, indicating what can be learned from this public health emergency, and what can be applied to the Brazilian scenario. Finally, this article discusses actions to prevent or reduce the frequency of zoonotic spillover events.
The interactions between chemokine receptors and their ligands may affect susceptibility to infectious diseases as well as their clinical manifestations. These interactions mediate both the traffic of inflammatory cells and virus-associated immune responses. In the context of viral infections, the human CC chemokine receptor type 5 (CCR5) receives great attention from the scientific community due to its role as an HIV-1 co-receptor. The genetic variant CCR5Δ32 (32 base-pair deletion in CCR5 gene) impairs CCR5 expression on the cell surface and is associated with protection against HIV infection in homozygous individuals. Also, the genetic variant CCR5Δ32 modifies the CCR5-mediated inflammatory responses in various conditions, such as inflammatory and infectious diseases. CCR5 antagonists mimic, at least in part, the natural effects of the CCR5Δ32 in humans, which explains the growing interest in the potential benefits of using CCR5 modulators for the treatment of different diseases. Nevertheless, beyond HIV infection, understanding the effects of the CCR5Δ32 variant in multiple viral infections is essential to shed light on the potential effects of the CCR5 modulators from a broader perspective. In this context, this review discusses the involvement of CCR5 and the effects of the CCR5Δ32 in human infections caused by the following pathogens: West Nile virus, Influenza virus, Human papillomavirus, Hepatitis B virus, Hepatitis C virus, Poliovirus, Dengue virus, Human cytomegalovirus, Crimean-Congo hemorrhagic fever virus, Enterovirus, Japanese encephalitis virus, and Hantavirus. Subsequently, this review addresses the impacts of CCR5 gene editing and CCR5 modulation on health and viral diseases. Also, this article connects recent findings regarding extracellular vesicles (e.g., exosomes), viruses, and CCR5. Neglected and emerging topics in "CCR5 research" are briefly described, with focus on Rocio virus, Zika virus, Epstein-Barr virus, and Rhinovirus. Finally, the potential influence of CCR5 on the immune responses to coronaviruses is discussed.
This review correlates and summarizes the role of the maternal-fetal interface in the immune tolerance of the fetus and the processes that lead to infection avoidance, emphasizing the participation of exosomes and other extracellular vesicles in both situations. Exosomes are released into the extracellular medium by several cell types and are excellent carriers of biomolecules. Host-derived exosomes and the transport of pathogen-derived molecules by exosomes impact infections in different ways. The interactions of exosomes with the maternal immune system are pivotal to a favorable gestational outcome. In this review, we highlight the potential role of exosomes in the establishment of an adequate milieu that enables embryo implantation and discuss the participation of exosomes released at the maternal-fetal interface during the establishment of an immune-privileged compartment for fetal development. The placenta is a component where important strategies are used to minimize the risk of infection. To present a contrast, we also discuss possible mechanisms used by pathogens to cross the maternal-fetal interface. We review the processes, mechanisms, and potential consequences of dysregulation in all of the abovementioned phenomena. Basic information about exosomes and their roles in viral immune evasion is also presented. The interactions between extracellular vesicles and bacteria, fungi, parasites and proteinaceous infectious agents are addressed. The discovery of the placental microbiota and the implications of this new microbiota are also discussed, and current proposals that explain fetal/placental colonization by both pathogenic and commensal microbes are addressed. The comprehension of such interactions will help us to understand the immune dynamics of human pregnancy and the mechanisms of immune evasion used by different pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.