Nociceptive Transient Receptor Potential channels such as TRPV1 are targets for treating pain. Both antagonism and agonism of TRP channels can promote analgesia, through inactivation and chronic desensitization. Since plant-derived mixtures of cannabinoids and the Cannabis component myrcene have been suggested as pain therapeutics, we screened terpenes found in Cannabis for activity at TRPV1. We used inducible expression of TRPV1 to examine TRPV1-dependency of terpene-induced calcium flux responses. Terpenes contribute differentially to calcium fluxes via TRPV1 induced by Cannabis-mimetic cannabinoid/terpenoid mixtures. Myrcene dominates the TRPV1-mediated calcium responses seen with terpenoid mixtures. Myrcene-induced calcium influx is inhibited by the TRPV1 inhibitor capsazepine and Myrcene elicits TRPV1 currents in the wholecell patch-clamp configuration. TRPV1 currents are highly sensitive to internal calcium. When Myrcene currents are evoked, they are distinct from capsaicin responses on the basis of I max and their lack of shift to a pore-dilated state. Myrcene pre-application and residency at TRPV1 appears to negatively impact subsequent responses to TRPV1 ligands such as Cannabidiol, indicating allosteric modulation and possible competition by Myrcene. Molecular docking studies suggest a non-covalent interaction site for Myrcene in TRPV1 and identifies key residues that form partially overlapping Myrcene and Cannabidiol binding sites. We identify several non-Cannabis plantderived sources of Myrcene and other compounds targeting nociceptive TRPs using a data mining approach focused on analgesics suggested by non-Western Traditional Medical Systems. These data establish TRPV1 as a target of Myrcene and suggest the therapeutic potential of analgesic formulations containing Myrcene.
The stereoelectronic requirements for interaction of the southern aliphatic hydroxyl of cannabimimetic pharmacophores with the CB1 and CB2 receptors are explored. The stereoselective syntheses of three series of classical/nonclassical hybrid cannabinoids are described. These compounds were designed to investigate the importance of the southern aliphatic hydroxyl (SAH) pharmacophore for cannabimimetic activity. Variation in the chain length of the SAH moiety in these 6beta-(hydroxyalkyl)dihydrobenzopyran analogues, from 6beta-hydroxymethyl to 6beta-(omega-hydroxyethyl) and 6beta-(omega-hydroxypropyl), and the effects of replacing the hydroxyl functionality by hydride and iodide are reported. Our results indicate that the SAH pharmacophore has less pronounced effects than the C-3 aliphatic chain on cannabinoid activity. Furthermore, it appears that this southern molecular component is capable of interacting with two different subsites on the receptor and that the nature of this interaction is determined by the terminal substituent on the C-6beta alkyl group. One of the subsites can accommodate the relatively polar SAH pharmacophore, while the second subsite interacts with more hydrophobic C-6beta substituents and can accommodate large spherical pharmacophores separated by three methylene carbons from the tricyclic cannabinoid template.
We report that hirsutinolides series, 6, 7, 10, 11, 20 and 22 and the semi-synthetic analogs, 30, 31, 33 and 36 inhibit constitutively-active Signal transducer and activator of transcription (Stat)3 and malignant glioma phenotype. A position 13 lipophilic ester group is required for activity. Molecular modeling and NMR structural analyses reveal direct hirsutinolide:Stat3 binding. One-hour treatment of cells with 6 and 22 also upregulated importin subunit α-2 levels and repressed translational activator GCN1, microtubule-associated protein (MAP)1B, thioredoxin reductase (TrxR)1 cytoplasmic isoform 3, glucose-6-phosphate 1-dehydrogenase isoform a, Hsp105, vimentin, and tumor necrosis factor α-induced protein (TNAP)2 expression. Active hirsutinolides inhibited anchorage-dependent and 3D-spheroid growth, survival, and migration of human glioma lines and glioma patients’ tumor-derived xenograft cells harboring constitutively-active Stat3. Oral gavage delivery of 6 or 22 inhibited human glioma tumor growth in subcutaneous mouse xenografts. The inhibition of Stat3 signaling represents part of the hirsutinolide-mediated mechanisms to induce antitumor effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.