The role of monocytes/macrophages in the pathogenesis of ischemia-reperfusion injury (IRI) is unknown. We sought to determine whether activation of macrophage adenosine 2A (A(2A)) receptors (A(2A)Rs) mediates tissue protection. We subjected C57Bl/6 mice infused with clodronate [dichloromethylene bisphosphonate (Cl(2)MBP)] to IRI (32 min of ischemia followed by 24 h of reperfusion) to deplete them of macrophages. IRI induced an elevation of plasma creatinine that was reduced with Cl(2)MBP (26% of control). Adoptive transfer of murine RAW 264.7 cells reconstituted injury, an effect blocked significantly by A(2A) agonists (27% of plasma creatinine from mice reconstituted with macrophages). Macrophages subjected to A(2A) knockout by small interfering RNA were adoptively transferred to macrophage-depleted mice and reconstituted injury (110% of control mice); however, the increase in plasma creatinine was blocked by A(2A) agonists (20% of vehicle treatment). Finally, the A(2A) agonist effect on IRI was blocked in macrophage-depleted A(2A)-knockout mice reconstituted with wild-type RAW 264.7 cells. RNase protection assays 24 h after IRI demonstrated that macrophages are required for IL-6 and TGF-beta mRNA induction. However, A(2A) agonist-mediated tissue protection is independent of IL-6 and TGF-beta mRNA. We conclude that the full extent of IRI requires macrophages and that A(2A) agonist-mediated tissue protection is independent of activation of macrophage A(2A)Rs.
Extracellular adenosine is a key immunosuppressive metabolite that restricts activation of cytotoxic lymphocytes and impairs antitumor immune responses. Here, we show that engagement of A2A adenosine receptor (A2AR) acts as a checkpoint that limits the maturation of natural killer (NK) cells. Both global and NK-cell-specific conditional deletion of A2AR enhanced proportions of terminally mature NK cells at homeostasis, following reconstitution, and in the tumor microenvironment. Notably, A2AR-deficient, terminally mature NK cells retained proliferative capacity and exhibited heightened reconstitution in competitive transfer assays. Moreover, targeting A2AR specifically on NK cells also improved tumor control and delayed tumor initiation. Taken together, our results establish A2AR-mediated adenosine signaling as an intrinsic negative regulator of NK-cell maturation and antitumor immune responses. On the basis of these findings, we propose that administering A2AR antagonists concurrently with NK cell-based therapies may heighten therapeutic benefits by augmenting NK cell-mediated antitumor immunity. Ablating adenosine signaling is found to promote natural killer cell maturation and antitumor immunity and reduce tumor growth. .
Activation of myocardial A 1 adenosine receptors (A 1 AR) protects the heart from ischemic injury. In this study transgenic mice were created using the cardiac-specific ␣-myosin heavy chain promoter and rat A 1 AR cDNA. Heart membranes from two transgene positive lines displayed Ϸ1,000-fold overexpression of A 1 AR (6,574 ؎ 965 and 10,691 ؎ 1,002 fmol per mg of protein vs. 8 ؎ 5 fmol per mg of protein in control hearts). Compared with control hearts, transgenic Langendorff-perfused hearts had a significantly lower intrinsic heart rate (248 beats per min vs. 318 beats per min, P < 0.05), lower developed tension (1.2 g vs. 1.6 g, P < 0.05), and similar coronary resistance. The difference in developed tension was eliminated by pacing. Injury of control hearts during global ischemia, indexed by time-to-ischemic contracture, was accelerated by blocking adenosine receptors with 50 M 8-(p-sulfophenyl) theophylline but was unaffected by addition of 20 nM N 6 -cyclopentyladenosine, an A 1 AR agonist. Thus A 1 ARs in ischemic myocardium are presumably saturated by endogenous adenosine. Overexpressing myocardial A 1 ARs increased time-to-ischemic contracture and improved functional recovery during reperfusion. The data indicate that A 1 AR activation by endogenous adenosine affords protection during ischemia, but that the response is limited by A 1 AR number in murine myocardium. Overexpression of A 1 AR affords additional protection. These data support the concept that genetic manipulation of A 1 AR expression may improve myocardial tolerance to ischemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.