The study of T regulatory cells (T reg cells) has been limited by the lack of specific surface markers and an inability to define mechanisms of suppression. We show that the expression of CD39/ENTPD1 in concert with CD73/ecto-5′-nucleotidase distinguishes CD4+/CD25+/Foxp3+ T reg cells from other T cells. These ectoenzymes generate pericellular adenosine from extracellular nucleotides. The coordinated expression of CD39/CD73 on T reg cells and the adenosine A2A receptor on activated T effector cells generates immunosuppressive loops, indicating roles in the inhibitory function of T reg cells. Consequently, T reg cells from Cd39-null mice show impaired suppressive properties in vitro and fail to block allograft rejection in vivo. We conclude that CD39 and CD73 are surface markers of T reg cells that impart a specific biochemical signature characterized by adenosine generation that has functional relevance for cellular immunoregulation.
Adenosine is a key endogenous molecule that regulates tissue function by activating four G-protein-coupled adenosine receptors: A1, A2A, A2B and A3. Cells of the immune system express these receptors and are responsive to the modulatory effects of adenosine in an inflammatory environment. Animal models of asthma, ischaemia, arthritis, sepsis, inflammatory bowel disease and wound healing have helped to elucidate the regulatory roles of the various adenosine receptors in dictating the development and progression of disease. This recent heightened awareness of the role of adenosine in the control of immune and inflammatory systems has generated excitement regarding the potential use of adenosine-receptor-based therapies in the treatment of infection, autoimmunity, ischaemia and degenerative diseases.
Cellular stress or apoptosis triggers the release of ATP, ADP and other nucleotides into the extracellular space. Extracellular nucleotides function as autocrine and paracrine signalling molecules by activating cell-surface P2 purinergic receptors that elicit pro-inflammatory immune responses. Over time, extracellular nucleotides are metabolized to adenosine, leading to reduced P2 signalling and increased signalling through anti-inflammatory adenosine (P1 purinergic) receptors. Here, we review how local purinergic signalling changes over time during tissue responses to injury or disease, and we discuss the potential of targeting purinergic signalling pathways for the immunotherapeutic treatment of ischaemia, organ transplantation, autoimmunity or cancer.
Adenosine accumulation during ischemia and inflammation protects tissues from injury. In ischemic tissues adenosine accumulates due to inhibition of adenosine kinase, and in inflamed tissues adenosine is formed from adenine nucleotides that are released from many cells including platelets, mast cells, nerves, and endothelium. Nucleotides are rapidly converted to adenosine by a family of ecto-nucleotidases including CD39 and CD73. Activation of A(1) and possibly A(3) adenosine receptors (ARs) protects heart and other tissues by preconditioning through a pathway including protein kinase C and mitochondrial K(ATP) channels. Activation of A(2A) receptors limits reperfusion injury by inhibiting inflammatory processes in neutrophils, platelets, macrophages and T cells. Adenosine produces proinflammatory responses mediated by receptors that vary among species; A(3) and A(2B) receptors mediate degranulation of rodent and human or canine mast cells, respectively. Novel adenosine receptor subtype-selective ligands have recently been developed. These include MRS1754 (A(2B) blocker), MRS1220 (A(3) blocker), MRE 3008F20 (human A(3) blocker), MRS1523 (rat A(3) blocker), and ATL146e (A(2A) agonist). These new pharmacologic tools will help investigators to sort out how adenosine protects tissues from injury and to identify new therapeutic agents that hold promise for the treatment of inflammatory and ischemic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.