Standard succulent vegetation mixes developed mostly in temperate climates are being increasingly used on green roofs in different climate zones with uncertain outcome regarding vegetation survival and cover. We investigated vegetation on green roofs at nine temperate, cold, and/or wet locations in Norway and Sweden covering wide ranges of latitude, mean annual temperature, annual precipitation, frequencies of freeze-thaw cycles, and longest annual dry period. The vegetation on the roofs were surveyed in two consecutive years, and weather data were compiled from meteorological databases. At all sites we detected a significant decline in species compared to originally intended (planted/sown) species. Both the survival rate and cover of the intended vegetation were positively related to the mean annual temperature. Contrary to a hypothesis, we found that intended vegetation cover was negatively rather than positively related to mean annual precipitation. Conversely, the unintended (spontaneous) vegetation was favoured by high mean annual precipitation and low mean annual temperature, possibly by enabling it to colonize bare patches and outcompete the intended vegetation. When there is high mortality and variation in cover of the intended vegetation, predicting the strength of ecosystem services the vegetation provides on green roofs is difficult. The results highlight the needs for further investigation on species traits and the local factors driving extinction and colonizations in order to improve survivability and ensure a dense vegetation throughout the successional stages of a green roof.
Green roofs have the potential to provide socio-ecological services in urban settings that lack vegetation and open space. However, implementation of green roofs is limited by high construction and maintenance costs. Consequently, green roof projects often disproportionately benefit wealthy communities and can further marginalise disadvantaged communities by increasing property values and housing costs. Vegetation cover on green roofs is crucial to their provisioning of socio-ecological services. Evidence suggests that green roof plantings change over time, especially with limited maintenance, and are replaced with spontaneous “weedy” species. This is often perceived as a failure of the original green roof design intent and spontaneous species are usually removed. However, where good coverage is achieved, spontaneous vegetation could provide beneficial services such as stormwater mitigation, habitat provision, and climate regulation. While social norms about “weediness” may limit the desirability of some spontaneous species, research suggests that their acceptability on green roofs increases with coverage. As spontaneous species can establish on green roofs without irrigation and fertiliser, reduced input costs could help facilitate adoption particularly in markets without an established green roof industry. Construction costs may also be reduced in hot and dry climates where deeper substrates are necessary to ensure plant survival, as many spontaneous species are able to colonise shallow substrates and can regenerate from seed. If implemented based on socio-ecological need, green roofs with spontaneous vegetation coverage may apply less pressure to property values and housing costs than conventionally planted green roofs, increasing the resilience of urban communities while limiting gentrification.
Both vegetation abundance and community composition play important roles in functions of green roofs (e.g. stormwater retention, habitat provision, aesthetic appearance). However, green roofs’ vegetation, and hence their functions, can change significantly over time. More understanding of these changes is required, particularly in cold climates. Therefore, this study investigated vascular plant covers and species compositions on 41 roof sections located in Sweden’s subarctic and continental climate zones. For the roof sections with a known originally intended vascular plant composition (n = 32), on average 24 ± 9% of the intended species were detected in surveys, and unintended species accounted for 69 ± 3% of the species found. However, most colonizing species formed sparse cover on the roofs. Thus, they may make less contributions to green roofs’ potential functionalities related to vegetation density (e.g. social perception, effectiveness in stormwater management and thermal performance) than the intended vegetation. The intended species dominated plant cover (93 ± 3%) and Sedum acre (58 ± 36% cover) was the most commonly detected species and as found in previous studies, substrate depth was positively related to both plant cover and species richness. Contrary to a hypothesis, the roofs’ vascular plant cover was not related to species richness but was significantly and negatively correlated with moss cover. The results highlight the importance of substrate depth for both plant abundance and species diversity and show that even in a cold climate, colonizing unintended species can strongly contribute to green roofs’ species richness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.