Abstract-Creating a standard for knowledge representation and reasoning in autonomous robotics is an urgent task if we consider recent advances in robotics as well as predictions about the insertion of robots in human daily life. Indeed, this will impact the way information is exchanged between multiple robots or between robots and humans and how they can all understand it without ambiguity. Indeed, Human Robot Interaction (HRI) represents the interaction of at least two cognition models (Human and Robot). Such interaction informs task composition, task assignment, communication, cooperation and coordination in a dynamic environment, requiring a flexible representation. Hence, this paper presents the IEEE RAS Autonomous Robotics (AuR) Study Group, which is a spin-off of the IEEE Ontologies for Robotics and Automation (ORA) Working Group, and and its ongoing work to develop the first IEEE-RAS ontology standard for autonomous robotics. In particular, this paper reports on the current version of the ontology for autonomous robotics as well as on its first implementation successfully validated for a human-robot interaction scenario, demonstrating the developed ontology's strengths which include semantic interoperability and capability to relate ontologies from different fields for knowledge sharing and interactions.
Purpose IEEE Ontologies for Robotics and Automation Working Group were divided into subgroups that were in charge of studying industrial robotics, service robotics and autonomous robotics. This paper aims to present the work in-progress developed by the autonomous robotics (AuR) subgroup. This group aims to extend the core ontology for robotics and automation to represent more specific concepts and axioms that are commonly used in autonomous robots. Design/methodology/approach For autonomous robots, various concepts for aerial robots, underwater robots and ground robots are described. Components of an autonomous system are defined, such as robotic platforms, actuators, sensors, control, state estimation, path planning, perception and decision-making. Findings AuR has identified the core concepts and domains needed to create an ontology for autonomous robots. Practical implications AuR targets to create a standard ontology to represent the knowledge and reasoning needed to create autonomous systems that comprise robots that can operate in the air, ground and underwater environments. The concepts in the developed ontology will endow a robot with autonomy, that is, endow robots with the ability to perform desired tasks in unstructured environments without continuous explicit human guidance. Originality/value Creating a standard for knowledge representation and reasoning in autonomous robotics will have a significant impact on all R&A domains, such as on the knowledge transmission among agents, including autonomous robots and humans. This tends to facilitate the communication among them and also provide reasoning capabilities involving the knowledge of all elements using the ontology. This will result in improved autonomy of autonomous systems. The autonomy will have considerable impact on how robots interact with humans. As a result, the use of robots will further benefit our society. Many tedious tasks that currently can only be performed by humans will be performed by robots, which will further improve the quality of life. To the best of the authors’knowledge, AuR is the first group that adopts a systematic approach to develop ontologies consisting of specific concepts and axioms that are commonly used in autonomous robots.
Robotics is a fast-growing field which requires the efficient development of adapted standards. Hence, in this paper, we propose a development methodology to support the robot standardization effort led by international, technical, and professional associations such as the Institute of Electrical and Electronics Engineers (IEEE). Our proposed standard development life cycle is a middle-out, iterative, collaborative, and incremental approach we have successfully applied to the development of the new IEEE Ontological Standard for Ethically Driven Robotics and Automation Systems (IEEE P7007 Standard).
a b s t r a c tThe working group Ontologies for Robotics and Automation, sponsored by the IEEE Robotics & Automation Society, recently proposed a Core Ontology for Robotics and Automation (CORA). This ontology was developed to provide an unambiguous definition of core notions of robotics and related topics. It is based on SUMO, a top-level ontology of general concepts, and on ISO 8373:2012 standard, developed by the ISO/TC184/SC2 Working Group, which defines-in natural language-important terms in the domain of Robotics and Automation (R&A). In this paper, we introduce a set of ontologies that complement CORA with notions such as industrial design and positioning. We also introduce updates to CORA in order to provide more ontologically sound representations of autonomy and of robot parts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.