Rationale: B-cell leukemia 11b (BCL11B) is a transcription factor known as an essential regulator of T lymphocytes and neuronal development during embryogenesis. A genome-wide association study (GWAS) showed that a gene desert region downstream of BCL11B, known to function as a BCL11B enhancer, harbors single nucleotide polymorphisms (SNPs) associated with increased arterial stiffness. However, a role for BCL11B in the adult cardiovascular system is unknown. Objective: Based on these human findings, we sought to examine the relation between BCL11B and arterial function. Methods and Results: Here we report that BCL11B is expressed in the vascular smooth muscle (VSM) where it regulates vascular stiffness. RNA sequencing of aortas from WT and Bcl11b null mice (BSMKO) identified the cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) as the most significant differentially regulated signaling pathway in BSMKO compared to WT mice. BSMKO aortas showed decreased levels of PKG1, increased levels of Ca ++ -calmodulin-dependent serine/threonine phosphatase calcineurin (PP2B) and decreased levels of their common phosphorylation target, vasodilator-stimulated phosphoprotein (pVASP S239 ), a regulator of cytoskeletal actin rearrangements. Decreased pVASP S239 in BSMKO aortas was associated with increased actin polymerization (F/G actin ratio). Functionally, aortic force, stress, wall tension and stiffness, measured ex vivo in organ baths, were increased in BSMKO aortas, and BSMKO mice had increased pulse wave velocity, the in vivo index of arterial stiffness. Despite having no effect on blood pressure or microalbuminuria, increased arterial stiffness in BSMKO mice was associated with increased incidence of cerebral microbleeds compared to age-matched WT littermates. Conclusions: We have identified VSM BCL11B as a crucial regulator of aortic smooth muscle function and a potential therapeutic target for vascular stiffness.
Many of the neurodegenerative diseases that afflict people in later life are associated with the formation of protein aggregates. These so-called “proteinopathies” include Alzheimer’s disease (AD) and Huntington’s disease (HD). The insulin/insulin-like growth factor signalling (IIS) pathway has been proposed to modulate such diseases in model organisms, as well as the general ageing process. In this pathway, insulin-like growth factor binds to insulin-like growth factor receptors, such as the insulin-like growth factor 1 receptor (IGF-1R). Heterozygous deletion of Igf-1r has been shown to lead to increased lifespan in mice. Reducing the activity of this pathway had benefits in a HD C. elegans model, and some of these may be attributed to the expected inhibition of mTOR activity resulting in an increase in autophagy, which would enhance mutant huntingtin clearance. Thus, we tested if heterozygous deletion of Igf-1r would lead to benefits in HD related phenotypes in the mouse. Surprisingly, reducing Igf-1r levels led to some beneficial effects in HD females, but also led to some detrimental effects in HD males. Interestingly, Igf-1r deficiency had no discernible effects on downstream mTOR signalling in HD mice. These results do not support a broad beneficial effect of diminishing the IIS pathway in HD pathology in a mammalian system.
An electrical sizing apparatus based on the Coulter Counter was used to measure rat spermatozoa from the proximal (caput) and distal (caudal) ends of the epididymis and from the ejaculate. The typical size distribution is unimodal with a positive skew, the crescent shape of the cells precluding absolute volume determination. During their passage through the epididymis, spermatozoa decrease in size as part of maturation. Saponin causes cell lysis and chymotrypsin cell shrinkage, both effects being more pronounced in the proximal region. It would seem that, during the maturation process within the epididymis, changes occur in the spermatozoon membrane that make the cells more stable.
The effect of caffeine on spermatozoal ability to penetrate zona-free hamster ova was examined on fresh and frozen-thawed semen samples. The mean motility of 10 fresh semen samples incubated with caffeine significantly increased from 29% to 35%. Sperm penetration into zona-free hamster ova did not differ between the control group and the specimens to which caffeine was added. The same effect of caffeine on sperm motility and hamster ova penetration was noted in the frozen-thawed sperm samples. Motility was enhanced by 21%, but hamster ova penetration did not significantly change. The increase in sperm motility caused by caffeine does not change the fertilizing ability of fresh and frozen-thawed human sperm.
Bacterial artificial chromosomes (BACs) offer a means of manipulating gene expression and tagging gene products in the mammalian genome without the need to alter endogenous gene structure and risk deleterious phenotypic consequences. However, for a BAC clone to be useful for such purposes it must be shown to contain all the regulatory elements required for normal gene expression and allow phenotypic rescue in the absence of an endogenous gene. Here, we report identification of a functional BAC containing Gadd45g, a gene implicated in DNA repair, DNA demethylation and testis determination in mice and exhibiting a broad pattern of embryonic expression. Mouse fetuses lacking the endogenous Gadd45g gene undergo normal testis development in the presence of the Gadd45g BAC transgene. Moreover, a survey of embryonic Gadd45g expression from the BAC reveals that all reported sites of expression are maintained. This functional BAC can now be used for subsequent manipulation of the Gadd45g gene with the confidence that regulatory elements required for embryonic expression, including testis determination, are present. We describe the generation and characterisation of a Gadd45g-mCherry fluorescent reporter exhibiting strong expression in developing gonads and neural tissue, recapitulating endogenous gene expression, as evidence of this.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.