The Network of Cancer Genes (NCG) is a manually curated repository of 2372 genes whose somatic modifications have known or predicted cancer driver roles. These genes were collected from 275 publications, including two sources of known cancer genes and 273 cancer sequencing screens of more than 100 cancer types from 34,905 cancer donors and multiple primary sites. This represents a more than 1.5-fold content increase compared to the previous version. NCG also annotates properties of cancer genes, such as duplicability, evolutionary origin, RNA and protein expression, miRNA and protein interactions, and protein function and essentiality. NCG is accessible at http://ncg.kcl.ac.uk/.Electronic supplementary materialThe online version of this article (10.1186/s13059-018-1612-0) contains supplementary material, which is available to authorized users.
Background
Genetic alterations of somatic cells can drive non-malignant clone formation and promote cancer initiation. However, the link between these processes remains unclear and hampers our understanding of tissue homeostasis and cancer development.
Results
Here, we collect a literature-based repertoire of 3355 well-known or predicted drivers of cancer and non-cancer somatic evolution in 122 cancer types and 12 non-cancer tissues. Mapping the alterations of these genes in 7953 pan-cancer samples reveals that, despite the large size, the known compendium of drivers is still incomplete and biased towards frequently occurring coding mutations. High overlap exists between drivers of cancer and non-cancer somatic evolution, although significant differences emerge in their recurrence. We confirm and expand the unique properties of drivers and identify a core of evolutionarily conserved and essential genes whose germline variation is strongly counter-selected. Somatic alteration in even one of these genes is sufficient to drive clonal expansion but not malignant transformation.
Conclusions
Our study offers a comprehensive overview of our current understanding of the genetic events initiating clone expansion and cancer revealing significant gaps and biases that still need to be addressed. The compendium of cancer and non-cancer somatic drivers, their literature support, and properties are accessible in the Network of Cancer Genes and Healthy Drivers resource at http://www.network-cancer-genes.org/.
The Network of Cancer Genes (NCG) is a manually curated repository of 2,372 genes whose somatic modifications have a known or predicted cancer driver role.These genes were collected from 275 publications, including two sources of known cancer genes and 273 cancer sequencing screens of 119 cancer types in 31 primary sites from 34,905 cancer donors. This represents a more than 1.5-fold increase in content as compared to the previous version. NCG also annotates properties of cancer genes, such as duplicability, evolutionary origin, RNA and protein expression, miRNA and protein interactions, protein function and essentiality. NCG is accessible at http://ncg.kcl.ac.uk/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.