Stems of bioenergy sorghum (Sorghum bicolor L. Moench.), a drought-tolerant C4 grass, contain up to 50 nodes and internodes of varying length that span 4-5 m and account for approximately 84% of harvested biomass. Stem internode growth impacts plant height and biomass accumulation and is regulated by brassinosteroid signaling, auxin transport, and gibberellin biosynthesis. In addition, an AGCVIII kinase (Dw2) regulates sorghum stem internode growth, but the underlying mechanism and signaling network are unknown. Here we provide evidence that mutation of Dw2 reduces cell proliferation in internode intercalary meristems, inhibits endocytosis, and alters the distribution of heteroxylan and mixed linkage glucan in cell walls. Phosphoproteomic analysis showed that Dw2 signaling influences the phosphorylation of proteins involved in lipid signaling (PLDd), endomembrane trafficking, hormone, light, and receptor signaling, and photosynthesis. Together, our results show that Dw2 modulates endomembrane function and cell division during sorghum internode growth, providing insight into the regulation of monocot stem development.
The evaluation of concussed athletes, including testing to determine if and when they may return to play, has become an important task of athletic trainers and team physicians. Currently, concussion protocols are in place, which depend largely upon assessments based upon neurocognitive testing (NCT). The authors have evaluated the use of a biomarker of brain trauma, marinobufagenin (MBG), and compared its application in concussed athletes with the performance of NTC. We found a disparity between these two testing procedures. In this communication, the findings of these comparative data are presented. We noted that athletes whose NCT evaluations had returned to baseline and who were allowed to again participate in play then showed a recurrence of elevated urinary MBG excretion. These observations raise concern as to the processes currently in effect with regard to the decision as to returning athletes to the full activity. They suggest a need for further evaluation.
SUMMARY
Bioenergy sorghum is a highly productive drought tolerant C4 grass that accumulates 80% of its harvestable biomass in approximately 4 m length stems. Stem internode growth is regulated by development, shading, and hormones that modulate cell proliferation in intercalary meristems (IMs). In this study, sorghum stem IMs were localized above the pulvinus at the base of elongating internodes using magnetic resonance imaging, microscopy, and transcriptome analysis. A change in cell morphology/organization occurred at the junction between the pulvinus and internode where LATERAL ORGAN BOUNDARIES (SbLOB), a boundary layer gene, was expressed. Inactivation of an AGCVIII kinase in DDYM (dw2) resulted in decreased SbLOB expression, disrupted IM localization, and reduced internode cell proliferation. Transcriptome analysis identified approximately 1000 genes involved in cell proliferation, hormone signaling, and other functions selectively upregulated in the IM compared with a non‐meristematic stem tissue. This cohort of genes is expressed in apical dome stem tissues before localization of the IM at the base of elongating internodes. Gene regulatory network analysis identified connections between genes involved in hormone signaling and cell proliferation. The results indicate that gibberellic acid induces accumulation of growth regulatory factors (GRFs) known to interact with ANGUSTIFOLIA (SbAN3), a master regulator of cell proliferation. GRF:AN3 was predicted to induce SbARF3/ETT expression and regulate SbAN3 expression in an auxin‐dependent manner. GRFs and ARFs regulate genes involved in cytokinin and brassinosteroid signaling and cell proliferation. The results provide a molecular framework for understanding how hormone signaling regulates the expression of genes involved in cell proliferation in the stem IM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.