Previous in vivo studies of skeletal muscle fatigue have demonstrated significant relationships between the decline of muscular force and changes in muscle metabolism. However, these studies performed measurements over relatively long time intervals or during steady state exercise, thereby obscuring rapid metabolic changes occurring at the onset of exercise and recovery. To overcome these limitations, fatigue of human calf musculature during sustained isometric foot plantar flexion was quantified continuously as the decline in maximal voluntary contraction force (MVC), while concentrations of phosphocreatine (PCr), inorganic phosphate (Pi), intracellular free hydrogen ion (H+), and monovalent phosphate (H2PO4-) were simultaneously measured at 2-second intervals by 31P nuclear magnetic resonance. The first major finding was that [H+], which has been thought to be a mediator of muscle fatigue, actually declined during the first 10 seconds of exercise when force was declining and rose immediately postexercise, when force partially recovered. Second, the correlations of [H+], [H2PO4-] and Pi with MVC during the first minute of exercise were determined to be curvilinear and not linear as previously suggested. Furthermore, using either a linear or curvilinear regression model, [H2PO4-] and Pi demonstrated a closer correlation to MVC than [H+] during the first minute of exercise. Thus, these results reveal nuances in the relationships of MVC to metabolites previously undetected by low time-resolution measurements. These findings suggest that during sustained isometric exercise, rising [H+] is not likely to be the sole mechanism of muscle fatigue and are consistent with the view that a rise of Pi or [H2PO4-] is a major causation factor in force reduction.
In in vivo phosphorus magnetic resonance spectroscopy (MRS), spectroscopic imaging (SI) can be used as a flexible localization technique, producing spectra from multiple volumes in a single examination. Presented here are phosphorus SI studies of human organs in which a selective-volume SI reconstruction was used rather than the usual array-format SI reconstruction. A linear predictor technique was used to estimate the initial points of the free induction decay missing because of the delay needed for phase-encoding gradients, significantly reducing the baseline artifacts which commonly complicate interpretation of SI spectra. In studies of heart, brain, liver, and kidney, the performance of SI was found to compare favorably with that of ISIS. SI phosphorus metabolite intensity images from a brain tumor patient were obtained at 2 X 2-cm in-plane resolution (with "slice" thickness of roughly 16 cm, determined by coil sensitivity) in 34 min, demonstrating the feasibility of obtaining clinically useful metabolite images in clinically reasonable examination times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.