Delta-6 desaturase, also known as fatty acid desaturase-2 (FADS2), is a component of a lipid metabolic pathway that converts the essential fatty acids linoleate and alpha-linolenate into long-chain polyunsaturated fatty acids. Isolation of Delta-6 desaturase/FADS2 cDNA from human skin predicts an identical protein to that expressed in human brain and Southern analysis indicates a single locus, together suggestive of a single Delta-6 desaturase/FADS2 gene. Within human skin, Delta-6 desaturase/FADS2 mRNA and protein expression is restricted to differentiating sebocytes located in the suprabasal layers of the sebaceous gland. Enzymatic analysis using CHO cells overexpressing human Delta-6 desaturase/FADS2 indicates catalysis of a "polyunsaturated fatty acid type" reaction, but also an unexpected "sebaceous-type" reaction, that of converting palmitate into the mono-unsaturated fatty acid sapienate, a 16-carbon fatty acid with a single cis double bond at the sixth carbon from the carboxyl end. Sapienate is the most abundant fatty acid in human sebum, and among hair-bearing animals is restricted to humans. This work identifies Delta-6 desaturase/FADS2 as the major fatty acid desaturase in human sebaceous glands and suggests that the environment of the sebaceous gland permits catalysis of the sebaceous-type reaction and restricts catalysis of the polyunsaturated fatty acid type reaction.
The sebaceous gland is an integral part of the pilosebaceous unit of mammalian skin, which produces and secretes a unique mixture of lipids, known as sebum. Wax esters, which account for approximately 25% of human sebaceous lipids, are unique in that they are not synthesized by other cells in the body. To explore the biosynthesis of wax esters, the metabolic fate of exogenously supplied saturated (16:0, 18:0), mono-unsaturated Delta9 (16:1, 18:1), and polyunsaturated (18:2, Delta9,12) fatty acids was followed in biopsy punches from human facial skin rich in sebaceous glands. Acetate was incorporated into all of the cellular and secreted lipids and 16:0 was incorporated into all of the fatty-acid-containing lipids. The 16:0 was elongated to 18:0 and the 16:1 was incorporated primarily into polar lipids, secondarily into triglycerides, but not into other lipids and was elongated to 18:1 (Delta11). As proven by HPTLC analysis, both 18:0 and 18:1 were incorporated into the cellular lipids but at a lower rate into wax esters. Moreover, addition of exogenous 18:1 was not further processed following initial incorporation. Linoleic acid (18:2, Delta9,12) was the only fatty acid tested that appeared to be subjected to beta-oxidation. This was proven to be specific to linoleic acid, as it did not induce the oxidation of other fatty acids. The ability of the sebaceous cells to synthesize wax esters correlated with the beta-oxidation activity in these cells. Thus, the oxidation of linoleic acid is specific for the sebaceous cells and correlates with their function and differentiation. Our results provide evidence that the sebaceous gland selectively utilizes fatty acids as 16:0 is the preferred fatty acid that is incorporated into wax esters and linoleic acid undergoes beta-oxidation.
To study the effects of retinoic acid on the skin in vivo, we have subverted the activity of endogenous receptors by targeting expression of a dominant negative mutant of retinoic acid receptor ~ (RARe) to the epidermis of transgenic mice. At birth, mice expressing the mutant RAR¢~ transgene exhibited a marked phenotype of a red, shiny skin that was somewhat sticky to touch. Severely affected neonates died within 24 hr. Histological changes in the epidermis were subtle with the phenotypic stratum corneum appearing slightly thinner and more loosely packed than in controls. Electron microscopic studies revealed that lipid multilamellar structures were not present between cells in the stratum corneum of phenotypic mice. When assayed for transepidermal water loss, phenotypic skin lost water at a rate three times faster than controls, suggesting that neonatal lethality resulted from loss of epidermal barrier function. The absence of a functional lipid barrier in transgenic mice first became evident at El7 when lipids were extruded initially into the intercellular space. We have identified a potential pathway linking inhibition of retinoid signaling with disruption of the lipid barrier that involves peroxisome proliferator-activated receptors. This study documents the role of the retinoid signaling pathway in formation and maintenance of a functional epidermis and provides the first evidence that this is mediated in part by modulation of lipid metabolism.
Stearoyl-CoA desaturase (SCD) is a regulatory enzyme involved in the synthesis of the monounsaturated fatty acids palmitoleate and oleate. The regulation of SCD is of physiological importance because the ratio of saturated fatty acids to unsaturated fatty acids is thought to modulate membrane fluidity. Differential display analysis of retinal pigment epithelial (ARPE-19) cells identified SCD as a gene regulated by retinoic acid. Two SCD transcripts of 3.9 and 5.2 kilobases in size were found to be expressed in these cells by Northern blot analysis. All-trans-retinoic acid (all-trans-RA) increased SCD mRNA expression in a dose-and time-dependent manner; a ϳ7-fold increase was observed with 1 M all-trans-RA at 48 h. SCD mRNA expression was also increased by 9-cis-retinoic acid (9-cis-RA) as well as 4-(E-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-1-propenyl)benzoic acid (TT-NPB), a retinoic acid receptor (RAR)-specific agonist. AGN194301, a RAR␣-specific antagonist, suppressed the SCD expression induced by all-trans-RA, TTNPB, and 9-cis-RA. These results indicate the involvement of RAR␣ in the induction of SCD expression by retinoic acid. However, AGN194204, a RXR (retinoid X receptor) pan agonist, also increased SCD mRNA expression. This increase was not blocked by AGN194301, suggesting that an RARindependent mechanism may also be involved. Thus, SCD expression in retinal pigment epithelial cells is regulated by retinoic acid, and the regulation appears to be mediated through RAR and RXR.Stearoyl-CoA desaturase (SCD, EC 1.14.99.5), 1 a microsomal enzyme, catalyzes the initial desaturation of long chain saturated fatty acids into monounsaturated fatty acids. Palmitate and stearate are the preferred substrates for this enzyme. They are converted to palmitoleate and oleate, respectively (1, 2). This oxidative reaction also requires the participation of 0 2 , NADPH, cytochrome b 5 , and cytochrome b 5 reductase. Two SCD genes, SCD1 and SCD2, characterized from both rat and mouse, encode functionally active proteins that share Ͼ80% sequence homology (3, 4). SCD1 and SCD2 show different tissue-specific expression patterns, possibly because of marked differences in the promoter sequences of their genes (5). There are also two loci for SCD genes in the human genome, one on chromosome 10 and another on chromosome 17 (6). However, the gene on chromosome 17 appears to be a transcriptionally inactive pseudogene. The gene on chromosome 10 encodes the functionally active 359-amino acid SCD protein. This gene yields two transcripts, 5.2 and 3.9 kb in size, which differ in the length of the 3Ј-untranslated region.The regulation of SCD by dietary factors, hormones, and peroxisomal proliferators has been studied in mouse and rat (7-12). The regulation of SCD is of physiological importance because changes in this enzyme activity could lead to changes in cell membrane phospholipid composition (8). Palmitoleic and oleic acids are the predominant unsaturated fatty acids present in fat depots and membrane phospholipids (9...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.