A hallmark of negative symptoms in schizophrenia is reduced motivation and goal directed behavior. While preclinical models suggest that blunted striatal dopamine levels can result in reduced motivation and goal-directed behavior, this mechanism is inconsistent with evidence for enhanced striatal dopamine levels in schizophrenia. In seeking to reconcile this discrepancy, one possibility is that negative symptoms reflect a failure of striatal motivational systems to mobilize appropriately in response to reward–related information. In the present study, we used a laboratory effort-based decision-making task in a sample of patients with schizophrenia and healthy controls. We found that patients and controls did not differ in the overall amount of effort expenditure, but patients made significantly less optimal choices in terms of maximizing rewards. These results provide further evidence for a selective deficit in the ability of schizophrenia patients to utilize environmental cues to guide reward-seeking behavior.
Objective Social impairments are a key feature of schizophrenia, but their underlying mechanisms are poorly understood. Imitation, a process through which we understand the minds of others, involves the so-called mirror neuron system, a network comprising the inferior parietal lobe, inferior frontal gyrus, and posterior superior temporal sulcus. The authors examined mirror neuron system function in schizophrenia. Method Sixteen medicated schizophrenia patients and 16 healthy comparison subjects performed an action imitation/ observation task during functional MRI. Participants saw a video of a moving hand or spatial cue and were instructed to either execute finger movements associated with the stimulus or simply observe. Activation in the mirror neuron system was measured during imitative versus nonimitative actions and observation of a moving hand versus a moving spatial cue. These contrasts were compared across groups. Results Activation in the mirror neuron system was less specific for imitation in schizophrenia. Relative to healthy subjects, patients had reduced activity in the posterior superior temporal sulcus during imitation and greater activity in the posterior superior temporal sulcus and inferior parietal lobe during nonimitative action. Patients also showed reduced activity in these regions during action observation. Mirror neuron system activation was related to symptom severity and social functioning in patients and to schizotypal syndrome in comparison subjects. Conclusions Given the role of the inferior parietal lobe and posterior superior temporal sulcus in imitation and social cognition, impaired imitative ability in schizophrenia may stem from faulty perception of biological motion and transformations from perception to action. These findings extend our understanding of social dysfunction in schizophrenia.
It is known that individuals with schizophrenia exhibit signs of impaired face processing, however, the exact perceptual and cognitive mechanisms underlying these deficits are yet to be elucidated. One possible source of confusion in the current literature is the methodological and conceptual inconsistencies that can arise from the varied treatment of different aspects of face processing relating to emotional and non-emotional aspects of face perception. This review aims to disentangle the literature by focusing on the performance of patients with schizophrenia in a range of tasks that required processing of non-emotional features of face stimuli (e.g., identity or gender). We also consider the performance of patients on non-face stimuli that share common elements such as familiarity (e.g., cars) and social relevance (e.g., gait). We conclude by exploring whether observed deficits are best considered as “face-specific” and note that further investigation is required to properly assess the potential contribution of more generalized attentional or perceptual impairments.
Schizophrenia is a life-long, debilitating psychotic disorder with poor outcome that affects about 1% of the population. Although pharmacotherapy can alleviate some of the acute psychotic symptoms, residual social impairments present a significant barrier that prevents successful rehabilitation. With limited resources and access to social skills training opportunities, innovative technology has emerged as a potentially powerful tool for intervention. In this paper, we present a novel virtual reality (VR)-based system for understanding facial emotion processing impairments that may lead to poor social outcome in schizophrenia. We henceforth call it a VR System for Affect Analysis in Facial Expressions (VR-SAAFE). This system integrates a VR-based task presentation platform that can minutely control facial expressions of an avatar with or without accompanying verbal interaction, with an eye-tracker to quantitatively measure a participants real-time gaze and a set of physiological sensors to infer his/her affective states to allow in-depth understanding of the emotion recognition mechanism of patients with schizophrenia based on quantitative metrics. A usability study with 12 patients with schizophrenia and 12 healthy controls was conducted to examine processing of the emotional faces. Preliminary results indicated that there were significant differences in the way patients with schizophrenia processed and responded towards the emotional faces presented in the VR environment compared with healthy control participants. The preliminary results underscore the utility of such a VR-based system that enables precise and quantitative assessment of social skill deficits in patients with schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.