An experimental investigation of frequential protrusion of four solid rods into the draft tube of a propeller turbine operating under partial discharge has been undertaken. The effectiveness of mitigating the pressure fluctuations associated with the rotating vortex rope (RVR) has been quantified using pressure measurements on the wall of the draft tube cone. Three azimuthal configurations of the phase difference between the rods, and four protrusion lengths were investigated. It is shown that the rotating component of the RVR decreases, irrespective of the azimuthal configuration and protrusion length, with imposed phase differences in the same direction as the runner rotation being the most effective, reducing the amplitude of the rotating component by a maximum of 62%. However, for each azimuthal configuration, the plunging mode of the RVR is amplified for large protrusion lengths, with the smallest amplification occurring for the case of 180 degrees phase difference between protrusions. Therefore, to quantify the most efficient configuration in mitigating the harmful effects of the RVR, an overall assessment of its effects on the entire turbine must be made before a conclusion can be drawn.
A novel method to mitigate the rotating vortex rope is investigated numerically on a propeller turbine using ANSYS CFX. Pulsating momentum is injected in a horizontal plane in the diffuser cone from four evenly spaced jets. Three mitigation strategies are tested; M1 in which the momentum is injected perpendicular to the axial flow direction, M2, which exhibit a 12 degree angle against the tangential velocity in the diffuser cone, and finally M3, which exhibit the same horizontal angle as M2 but at a 15 % higher flow rate. It is shown that mitigation attempts M1, M2 and M3 decrease the amplitude of the rotating mode by 51%,96% and 97%, respectively. The amplitude of the plunging mode, on the other hand, increase for all mitigation attempts. However, the amplitude of the plunging mode of the unperturbed RVR is an order of magnitude smaller than the rotating mode, and thus, the overall amplitude of the pressure fluctuations in the diffuser decreases significantly. The more efficient mitigation using attempt M2 and M3 are explained using velocity contour in the diffuser cone, which show that the RVR is significantly reduced downstream of the injection plane in between injections, which is not the case for attempt M1.
The present work examines the effects of the radial protrusion of four cylindrical rods at different lengths within the flow field of a down-scaled turbine draft tube under part-load operating conditions. Four rods were placed on the same plane 90 degrees apart. The protrusion length was varied from zero to approximately 90 % of the draft tube radius. Time-resolved pressure measurements were performed to quantify the effect of the rod protrusion, using two pressure sensors at the same vertical level 180 degrees apart. Such sensor configuration enabled the decomposition of the signals into rotating and plunging components of the rotating vortex rope (RVR). The results show that different levels of mitigation are achieved for the rotating and plunging components depending on the protrusion length. The effects on the plunging component differ from the ones on the rotating component. The RVR plunging pressure pulsations slightly increase with the initial rod protrusion and then significantly drop after a certain length. On the contrary, the rotating component of the pressure pulsation amplitudes immediately decreases with the onset of rod protrusion. However, an optimum length is obtained in both cases where the highest mitigation occurs before reaching the maximum protrusion. This observation falls in line with the previous investigations conducted for oscillatory rod protrusions, further approving the point that a closed-loop controller should accompany the mitigation technique to achieve optimum mitigation.
Radially protruded solid rods and their interaction with the rotating vortex rope at part load condition are investigated numerically on an axial model turbine. The commercially available software ANSYS CFX was used to perform the simulation, and the test case was the Porjus U9 Kaplan turbine model operating at a fixed runner blade angle at part load condition. Four rods, with a rod diameter equal to 15% of the runner diameter were evenly distributed in a horizontal plane in the draft tube cone and protruded to a length set to intercept the RVR in its unperturbed trajectory. It is shown that the RVR plunging (synchronous) mode is completely mitigated upstream and downstream of the protruded rods. The RVR rotating (asynchronous) mode is reduced by 47% and 63% at the two monitor positions located upstream of the protruding rods, while only a minor reduction occurs to the first RVR harmonic at the monitor positions located downstream of the protruded rods. The perturbed RVR experiences an increased angular velocity due to the flow area decrease caused by the protruding rods, thus increasing the RVR frequency by approximately 53% compared to the unperturbed value. Investigation of the swirling flow indicates a locally increased swirl in the center of the draft tube downstream of the protruded rods which could explain the reduction of the RVR pressure amplitude. The overall turbine efficiency with solid rods protruded causes a marginally efficiency reduction of 0.85%. However, as the RVR pressure pulsations are reduced significantly, a more comprehensive investigation of the rods impact on the turbine performance and life time should be performed to elucidate the suitability of using solid rod protrusion for RVR mitigation.
In this study, the flow in the conical section of the draft tube of a propeller turbine has been investigated at the best efficiency point and part-load operating conditions using 2D and stereoscopic 3D particle image velocimetry. Since the flow in the turbine is periodic, it is necessary to study the mean flow field rather than the instantaneous one to identify the flow characteristics from a statistical standpoint. However, the statistical convergence of the obtained mean velocity is questionable. Thus, the current work proposes a methodology for investigating the convergence of mean velocity profiles based on the central limit theorem. The methodology is applied to the best efficiency point and part-load results. The results show that 3D PIV results have lower uncertainty than 2D PIV results because measuring the tangential velocity component affects uncertainty, only measured in 3D PIV. The uncertainty difference is more significant, especially in part-load operation, due to the presence of the rotating vortex rope, and therefore a more accurate measurement is necessary to produce a reliable mean flow field. Furthermore, the convergence of the mean velocity profile is faster, with lower uncertainty for best efficiency point results since, at the part-load condition, the tangential velocity component of the flow is higher. In addition, the converged mean velocity profiles show a backflow region with minor rotation in the center, surrounded by a high rotational axial flow during the part-load operation of the turbine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.