Cervical spine trauma is a common problem with a wide range of severity from minor ligamentous injury to frank osteo-ligamentous instability with spinal cord injury. The emergent evaluation of patients at risk relies on standardized clinical and radiographic protocols to identify injuries; elucidate associated pathology; classify injuries; and predict instability, treatment and outcomes. The unique anatomy of each region of the cervical spine demands a review of each segment individually. This article examines both upper cervical spine injuries, as well as subaxial spine trauma. The purpose of this article is to provide a review of the broad topic of cervical spine trauma with reference to the classic literature, as well as to summarize all recently available literature on each topic.Identification of References for Inclusion:A Pubmed and Ovid search was performed for each topic in the review to identify recently published articles relevant to the review. In addition prior reviews and classic references were evaluated individually for inclusion of classic papers, classifications and previously unidentified references.
Background: Outcomes of surgical intervention for lumbar synovial cysts have been evaluated in the short and intermediate term. Concerns regarding cyst recurrence, the development of late instability at the involved level, and instability/stenosis at adjacent levels (when concomitant) fusion is performed suggest that long term follow-up is needed. This study aims to fill that void.
Study DesignIn vitro cadaveric study.PurposeTo compare biomechanical performance, trial and implant insertion, and disc distraction during implant placement, when two interbody devices, an in situ continuously expandable spacer (CES) and a traditional static spacer (SS), were used for transforaminal lumbar interbody fusion.Overview of LiteratureSevere degenerative disc diseases necessitate surgical management via large spacers to increase the disc space for implants. Next-generation interbody devices that expand in situ minimize insertion forces, optimize fit between vertebral endplates, and limit nerve root retraction. However, the literature lacks characterization of insertion forces as well as details on other parameters of expandable and static spacers.MethodsTen cadaveric segments (L5–S1) were divided into two groups (n=5) and implanted with either CES or SS. Each specimen experienced unconstrained pure moment of ±6 Nm in flexion–extension, lateral bending, and axial rotation to assess the contribution of CES and SS implants in biomechanical performance. Radiographic analysis was performed during trial and implant insertion to measure distraction during spacer insertion at the posterior, central, and anterior disc regions. Pressure sensors measured the force of trial and implant insertion.ResultsBiomechanical analysis showed no significant differences between CES and SS in all planes of motion. A total 2.6±0.9 strikes were required for expandable spacer trials insertion and 2.6±0.5 strikes for CES insertion. A total of 8.4±3.8 strikes were required to insert SS trials and 4.2±1.6 strikes for SS insertion. The total force per surgery was 330 N for CES and 635 N for SS. Fluoroscopic analysis revealed a significant reduction in distraction during implant insertion at the posterior and anterior disc regions (CES, 0.58 and 0.14 mm; SS, 1.04 and 0.78 mm, respectively).ConclusionsResults from the three study arms reveal the potential use of expandable spacers. During implant insertion, CESs provided similar stability, required less insertion force, and significantly reduced over-distraction of the annulus compared with SS.
The ability to reliably measure and calculate the degree of transverse plane rotation by radiographs in cerebral palsy patients with spino-pelvic deformity by the method described by Lucas et al. is poor, likely because of difficulty in consistently identify pelvic landmarks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.