Interactions among conspecifics influence social evolution through two distinct but intimately related paths. First, they provide the opportunity for indirect genetic effects (IGEs), where genes expressed in one individual influence the expression of traits in others. Second, interactions can generate social selection when traits expressed in one individual influence the fitness of others. Here, we present a quantitative genetic model of multivariate trait evolution that integrates the effects of both IGEs and social selection, which have previously been modeled independently. We show that social selection affects evolutionary change whenever the breeding value of one individual covaries with the phenotype of its social partners. This covariance can be created by both relatedness and IGEs, which are shown to have parallel roles in determining evolutionary response. We show that social selection is central to the estimation of inclusive fitness and derive a version of Hamilton's rule showing the symmetrical effects of relatedness and IGEs on the evolution of altruism. We illustrate the utility of our approach using altruism, greenbeards, aggression, and weapons as examples. Our model provides a general predictive equation for the evolution of social phenotypes that encompasses specific cases such as kin selection and reciprocity. The parameters can be measured empirically, and we emphasize the importance of considering both IGEs and social selection, in addition to relatedness, when testing hypotheses about social evolution.
Hormones coordinate the co-expression of behavioral, physiological, and morphological traits, giving rise to correlations among traits and organisms whose parts work well together. This article considers the implications of these hormonal correlations with respect to the evolution of hormone-mediated traits. Such traits can evolve owing to changes in hormone secretion, hormonal affinity for carrier proteins, rates of degradation and conversion, and interaction with target tissues to name a few. Critically, however, we know very little about whether these changes occur independently or in tandem, and thus whether hormones promote the evolution of tight phenotypic integration or readily allow the parts of the phenotype to evolve independently. For example, when selection favors a change in expression of hormonally mediated characters, is that alteration likely to come about through changes in hormone secretion (signal strength), changes in response to a fixed level of secretion (sensitivity of target tissues), or both? At one extreme, if the phenotype is tightly integrated and only the signal responds via selection's action on one or more hormonally mediated traits, adaptive modification may be constrained by past selection for phenotypic integration. Alternatively, response to selection may be facilitated if multivariate selection favors new combinations that can be easily achieved by a change in signal strength. On the other hand, if individual target tissues readily "unplug" from a hormone signal in response to selection, then the phenotype may be seen as a loose confederation that responds on a trait-by-trait basis, easily allowing adaptive modification, although perhaps more slowly than if signal variation were the primary mode of evolutionary response. Studies reviewed here and questions for future research address the relative importance of integration and independence by comparing sexes, individuals, and populations. Most attention is devoted to the hormone testosterone (T) and a songbird species, the dark-eyed junco (Junco hyemalis).
Hormones mediate the expression of suites of correlated traits and hence may act both to facilitate and constrain adaptive evolution. Selection on one trait within a hormone-mediated suite may, for example, lead to a change in the strength of the hormone signal, causing either beneficial or detrimental changes in correlated traits. Theory and empirical methods for studying correlated trait evolution have been developed by the field of evolutionary quantitative genetics, and here we suggest that their application to the study of hormone-mediated suites may prove fruitful. We present hypotheses for how selection shapes the evolution of hormone-mediated suites and argue that correlational selection, which arises when traits interact in their effects on fitness, may act to alter or conserve the composition of hormone-mediated suites. Next, we advocate using quantitative genetic methods to assess natural covariation among hormone-mediated traits and to measure the strength of natural selection acting on them. Finally, we present illustrative examples from our own work on the evolution of testosterone-mediated suites in male and female dark-eyed juncos. We conclude that future work on hormone-mediated suites, if motivated by quantitative genetic theory, may provide important insights into their dual roles as adaptations and evolutionary constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.