Buildings play a key role in the transition to a low-carbon-energy system and in achieving Paris Agreement climate targets. Analyzing potential scenarios for building decarbonization in different socioeconomic contexts is a crucial step to develop national and transnational roadmaps to achieve global emission reduction targets. This study integrates building stock energy models for 32 countries across four continents to create carbon emission mitigation reference scenarios and decarbonization scenarios by 2050, covering 60% of today’s global building emissions. These decarbonization pathways are compared to those from global models. Results demonstrate that reference scenarios are in all countries insufficient to achieve substantial decarbonization and lead, in some regions, to significant increases, i.e., China and South America. Decarbonization scenarios lead to substantial carbon reductions within the range projected in the 2 °C scenario but are still insufficient to achieve the decarbonization goals under the 1.5 °C scenario.
Buildings are responsible for a major share of global final energy consumption and carbon dioxide (CO2) emissions. An analysis of the worldwide observed drivers of demand can highlight the policy actions most suited to drive the decarbonization of the building sector. To contribute to such an analysis, we carry out a mapping of the literature on determinants of energy demand and CO2 emissions from buildings. The work includes a list and classification of relevant studies in an on-line geographical map, a description of trends and gaps, and a narrative review. We identify 4080 articles in the Scopus and the Web of Science databases, of which 712 are relevant after screening at the title and abstract level, and 376 are included for data extraction. The literature base mostly addresses electricity and water use, in North America and Europe (57% of the literature) and Asia (27%). Econometric modeling approaches using panel data to calculate demand elasticities, dominate. These findings highlight gaps in terms of the studied variables (only 5% focus on CO2 emissions while a mere 1% have a lifecycle perspective), geographical scope (only 5% of the articles focus on Africa, 7% on Latin America and the Caribbean, and 5% on Oceania), and methodological approach (only 5% use qualitative methods). We confirm that worldwide, income, energy price and outdoor temperature are unequivocal drivers of buildings energy demand and CO2 emissions, followed by other indicators of scale such as population or heated floor area. Our analysis makes it clear that decoupling from rising wealth levels has not been observed. This will continue to challenge reductions in energy use and CO2 emissions from buildings in line with climate targets. Macroeconomic policies focusing on the impacts of income, energy price, population and growing floor area are needed in combination with technical policy to reduce the impact of outdoor climate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.