We consider the problem of finding near-optimal solutions for a variety of NP-hard scheduling problems for which the objective is to minimize the total weighted completion time. Recent work has led to the development of several techniques that yield constant worst-case bounds in a number of settings. We continue this line of research by providing improved performance guarantees for several of the most basic scheduling models, and by giving the first constant performance guarantee for a number of more realistically constrained scheduling problems. For example, we give an improved performance guarantee for minimizing the total weighted completion time subject to release dates on a single machine, and subject to release dates and/or precedence constraints on identical parallel machines. We also give improved bounds on the power of preemption in scheduling jobs with release dates on parallel machines.We give improved on-line algorithms for many more realistic scheduling models, including environments with parallelizable jobs, jobs contending for shared resources, tree precedence-constrained jobs, as well as shop scheduling models. In several of these cases, we give the first constant performance guarantee achieved on-line. Finally, one of the consequences of our work is the surprising structural property that there are schedules that simultaneously approximate the optimal makespan and the optimal weighted completion time to within small constants. Not only do such schedules exist, but we can find approximations to them with an on-line algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.