We have identified a human cDNA encoding a novel protein, exchange factor for ARF6 (EFA6), which contains Sec7 and pleckstrin homology domains. EFA6 promotes efficient guanine nucleotide exchange on ARF6 and is distinct from the ARNO family of ARF1 exchange factors. The protein localizes to a dense matrix on the cytoplasmic face of plasma membrane invaginations, induced on its expression. We show that EFA6 regulates endosomal membrane recycling and promotes the redistribution of transferrin receptors to the cell surface. Furthermore, expression of EFA6 induces actin-based membrane ruffles that are inhibited by co-expression of dominant-inhibitory mutant forms of ARF6 or Rac1. Our results demonstrate that by catalyzing nucleotide exchange on ARF6 at the plasma membrane and by regulating Rac1 activation, EFA6 coordinates endocytosis with cytoskeletal rearrangements.
HIV-1 drug resistance mutations are often inversely correlated with viral fitness, which remains poorly described at the molecular level. Some resistance mutations can also suppress resistance caused by other resistance mutations. We report the molecular mechanisms by which a virus resistant to lamivudine with the M184V reverse transcriptase mutation shows increased susceptibility to tenofovir and can suppress the effects of the tenofovir resistance mutation K65R. Additionally, we report how the decreased viral replication capacity of resistant viruses is directly linked to their decreased ability to use natural nucleotide substrates and that combination of the K65R and M184V resistance mutations leads to greater decreases in viral replication capacity. All together, these results define at the molecular level how nucleoside-resistant viruses can be driven to reduced viral fitness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.